MapReduce-序列化(Writable)
Hadoop 序列化特点
Java 的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop 自己开发了一套序列化机制(Writable) Hadoop 序列化特点:
紧凑:高效使用存储空间
快速:读写数据的额外开销小
可扩展:随着通信协议的升级而可升级
互操作:支持多语言的交互
常用数据类型对应的 Hadoop 数据序列化类型
|
Java类型 |
Hadoop Writable类型 |
|
boolean |
BooleanWritable |
|
byte |
ByteWritable |
|
int |
IntWritable |
|
float |
FloatWritable |
|
long |
LongWritable |
|
double |
DoubleWritable |
|
String |
Text |
|
map |
MapWritable |
|
array |
ArrayWritable |
自定义序列化数据类型
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
(3)重写序列化方法
(4)重写反序列化方法
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写 toString(),可用 \t 分开,方便后续用
(7)如果需要将自定义的 bean 放在 key 中传输,则还需要实现Comparable 接口,因为 MapReduce 框中的 Shuffle 过程要求对 key 必须能排序
测试:完成手机号的总上行流量,总下行流量,总流量的统计
测试数据 phone.txt
1 13736230513 192.196.100.1 www.atguigu.com 2481 24681 200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.atguigu.com 1527 2106 200
6 13470253144 192.168.100.3 www.atguigu.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.atguigu.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.100.17 120 120 200
21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.100.19 1116 954 200
定义序列化对象
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.Writable; public class FlowBean implements Writable { // 上行流量
private long upFlow;
// 下行流量
private long downFlow;
// 总流量
private long sumFlow; public FlowBean() {
// 空参构造, 后续反射用
super();
} public FlowBean(long upFlow, long downFlow) {
super();
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
} @Override
public void write(DataOutput out) throws IOException {
// 序列化方法
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
} @Override
public void readFields(DataInput in) throws IOException {
// 反序列化方法
// 必须要求和序列化方法顺序一致
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
} @Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
}
MapReduce程序
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator; import java.io.IOException; public class FlowsumDriver { static {
try {
// 设置 HADOOP_HOME 环境变量
System.setProperty("hadoop.home.dir", "D://DevelopTools/hadoop-2.9.2/");
// 日志初始化
BasicConfigurator.configure();
// 加载库文件
System.load("D://DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load.\n" + e);
System.exit(1);
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
// 获取job对象
Job job = Job.getInstance(conf); // 设置jar的路径
job.setJarByClass(FlowsumDriver.class); // 关联mapper和reducer
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReducer.class); // 设置mapper输出的key和value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class); // 设置最终输出的key和value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class); // 设置输入输出路径
args = new String[]{"D://tmp/phone.txt", "D://tmp/456"};
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
} class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> { private Text k = new Text();
private FlowBean v; @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 获取一行
String line = value.toString();
// 切割 \t
String[] fields = line.split("\t");
// 手机号
k.set(fields[1]);
long upFlow = Long.parseLong(fields[fields.length - 3]);
long downFlow = Long.parseLong(fields[fields.length - 2]);
v = new FlowBean(upFlow, downFlow);
// 写出
context.write(k, v);
}
} class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> { private FlowBean v; @Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
long sumUpFlow = 0L;
long sumDownFlow = 0L;
// 累加求和
for (FlowBean flowBean : values) {
sumUpFlow += flowBean.getUpFlow();
sumDownFlow += flowBean.getDownFlow();
}
v = new FlowBean(sumUpFlow, sumDownFlow);
// 写出
context.write(key, v);
}
}
结果 part-r-00000
13470253144 4296 1612 5908
13509468723 7335 110349 117684
13560439638 918 4938 5856
13568436656 3597 25635 29232
13590439668 1116 954 2070
13630577991 6960 690 7650
13682846555 1938 2910 4848
13729199489 240 0 240
13736230513 2481 24681 27162
13768778790 120 120 240
13846544121 264 0 264
13956435636 132 1512 1644
13966251146 240 0 240
13975057813 11058 48243 59301
13992314666 3008 3720 6728
15043685818 3659 3538 7197
15910133277 3156 2936 6092
15959002129 1938 180 2118
18271575951 1527 2106 3633
18390173782 9531 2412 11943
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/Writable.html
MapReduce-序列化(Writable)的更多相关文章
- MapReduce框架原理-Writable序列化
序列化和反序列化 序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储(持久化)和网络传输. 反序列化就是将收到字节序列(或其他数据传输协议)或者是硬盘的持久化数据,转换成内存中的 ...
- MapReduce序列化及分区的java代码示例
概述 序列化(Serialization)是指把结构化对象转化为字节流. 反序列化(Deserialization)是序列化的逆过程.把字节流转为结构化对象. 当要在进程间传递对象或持久化对象的时候, ...
- MapReduce之Writable相关类
当要在进程间传递对象或持久化对象的时候,就需要序列化对象成字节流,反之当要将接收到或从磁盘读取的字节流转换为对象,就要进行反序列化.Writable是Hadoop的序列化格式,Hadoop定义了这样一 ...
- hadoop学习第四天-Writable和WritableComparable序列化接口的使用&&MapReduce中传递javaBean的简单例子
一. 为什么javaBean要继承Writable和WritableComparable接口? 1. 如果一个javaBean想要作为MapReduce的key或者value,就一定要实现序列化,因为 ...
- Hadoop MapReduce基本原理
一.什么是: MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都 ...
- Hadoop (六):MapReduce基本使用
MapReduce原理 背景 因为如果要对海量数据进行计算,计算机的内存可能会不够. 因此可以把海量数据切割成小块多次计算. 而分布式系统可以把小块分给多态机器并行计算. MapReduce概述 Ma ...
- [DB] MapReduce
概述 大数据计算的核心思想:移动计算比移动数据更划算 MapReduce既是一个编程模型,又是一个计算框架 包含Map和Reduce两个过程 终极目标:用SQL语句分析大数据(Hive.SparkSQ ...
- MapReduce02 序列化
目录 MapReduce 序列化 概述 自定义序列化 常用数据序列化类型 int与IntWritable转化 Text与String 序列化读写方法 自定义bean对象实现序列化接口(Writable ...
- Hadoop【MR开发规范、序列化】
Hadoop[MR开发规范.序列化] 目录 Hadoop[MR开发规范.序列化] 一.MapReduce编程规范 1.Mapper阶段 2.Reducer阶段 3.Driver阶段 二.WordCou ...
- MepReduce-开启大数据计算之门
Hadoop MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.早期的MapReduce(MR)框架简单明了,JobTracker作为MR框架的集中处理点,随着分布式系统集群 ...
随机推荐
- 【原】Java学习笔记019 - 面向对象
package cn.temptation; public class Sample01 { public static void main(String[] args) { // 仔细想一想,Ani ...
- c/c++ 重载运算符 关系,下标,递增减,成员访问的重载
重载运算符 关系,下标,递增减,成员访问的重载 为了演示关系,下标,递增减,成员访问的重载,创建了下面2个类. 1,类StrBlob重载了关系,下标运算符 2,类StrBlobPtr重载了递增,抵减, ...
- Proxmox VE登陆的时候提示没有有效的订阅You do not have a valid subscription for this server. Please visit www.proxmox.com to get a list of available options.
问题描述: 用的是免费版的,所以每次都提示这个没有有效的订阅挺烦的 解决方法: 修改文件/usr/share/javascript/proxmox-widget-toolkit/proxmoxlib. ...
- web渗透 学习计划(转载)
作者:向生李链接:https://www.zhihu.com/question/21914899/answer/39344435来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
- Spring Boot 2.x 快速入门(下)HelloWorld示例详解
上篇 Spring Boot 2.x 快速入门(上)HelloWorld示例 进行了Sprint Boot的快速入门,以实际的示例代码来练手,总比光看书要强很多嘛,最好的就是边看.边写.边记.边展示. ...
- 【模块04-大数据技术入门】02节-HDFS核心知识
分布式存储 (1) 5PB甚至更大的数据集怎么存储 ? 所有数据分块,每个数据块冗余存储在多台机器上(冗余可提高数据块高可用性).另外一台机器上启动一个管理所有节点.以及存储在各节点上面数据块的服务. ...
- 读书笔记---<<图解HTTP>>(一)
一.了解Web及网络基础 1. 网络基础TCP/IP 通常使用的网络包括互联网都是在TCP/IP协议族的基础上运作的,而HTTP属于它内部的一个子集. 1.1 TCP/IP协议族 像这样吧与互联网关联 ...
- mm-wiki安装部署
参考连接:https://github.com/skyhack1212/mm-wiki 打开 https://github.com/phachon/mm-wiki/releases 找到对应平台的版本 ...
- Xshell 连接Linux服务器自动中断问题
Xshell连接上Linux服务器后经常自动中断连接,报错如下图: 解决方法如下,进入/etc/ssh目录打开sshd_config文件,找到下图两个参数并设置下图所示的值: 重启sshd即可解决,如 ...
- java中内存分配
java程序运行时内存分配详解 一. 基本概念 每运行一个java程序会产生一个java进程,每个java进程可能包含一个或者多个线程,每一个Java进程对应唯一一个JVM实例,每一个JVM实例唯一 ...