话说好久没更博了。

最近学了好多知识懒的加进来了。

有幸认识一位大佬。

让我有了继续更博的兴趣。

但这是一个旧的题解。

我在某谷上早就发过的。

拿过来直接用就当回归了吧。


其实这道题有一个特别关键的思路。

拿着你要确定的魔板中列去枚举要匹配的魔板的每一列。

因为列是可以交换的。

而且还有最关键的一个点。

如果你确定了其中有一列对应了,那么你的魔板其实就已经固定了。行就不能变换了。

上边这个关键点的确不好想,但是想通了这个题也就好解决了。

然后就可以用map进行对应开始查询。

如果手里的魔板的数和要确定了一一对应了就YES了。

然后你手里的魔板和需要对应的魔板对应成功就可以输出YES了。

要记着在每次枚举的时候clear一次。

具体看下面代码。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cctype>
#include<map>
#define rg register
#define int long long
using namespace std;
inline int read(){
rg int s=0,f=0;
rg char ch=getchar();
while(!isdigit(ch)) f|=(ch=='-'),ch=getchar();
while(isdigit(ch)) s=(s<<1)+(s<<3)+(ch^48),ch=getchar();
return f?-s:s;
}
int n,m,k;
const int MAX=115;
int a1[MAX][MAX],a2[MAX][MAX],vis[MAX];
string S;
map<string,int>hsh;
void init(){
n=read(),m=read();
for(rg int i=1;i<=n;++i){
for(rg int j=1;j<=m;++j){
a1[i][j]=read();
}
}
for(rg int i=1;i<=n;++i){
for(rg int j=1;j<=m;++j){
a2[i][j]=read();
}
}
}
signed main(){
k=read();
++k;
while(--k){
bool flag=0;
init();//初始化。
for(rg int i=1;i<=m;++i){
hsh.clear();//每次都要清空。
for(rg int j=1;j<=n;++j){
vis[j]=(a1[j][1]==a2[j][i])?0:1;
}//枚举是否能够对应。
for(rg int j=1;j<=n;++j){
for(rg int k=1;k<=m;++k){
a1[j][k]^=vis[j];
}
}//对应就可以^1(代表翻转过了)。
for(rg int j=1;j<=m;++j){
string s=S;
for(rg int k=1;k<=n;++k){
s+=(char)(a1[k][j]+'0');
}
++hsh[s];
}//转换成字符串。
for(rg int j=1;j<=n;++j){
for(rg int k=1;k<=m;++k){
a1[j][k]^=vis[j];
}
}//还原
for(rg int j=1;j<=m;++j){
string s=S;
for(rg int k=1;k<=n;++k){
s+=(char)(a2[k][j]+'0');
}
if(!hsh[s]) break;//这里没被改过就跳过。
--hsh[s];
if(j==m) flag=1;
}
}
if(flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}

完美。

【题解】魔板—洛谷P1275。的更多相关文章

  1. 【题解】【洛谷 P1967】 货车运输

    目录 洛谷 P1967 货车运输 原题 题解 思路 代码 洛谷 P1967 货车运输 原题 题面请查看洛谷 P1967 货车运输. 题解 思路 根据题面,假设我们有一个普通的图: 作图工具:Graph ...

  2. 洛谷P1275 魔板

    P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...

  3. 洛谷 P1275 魔板

    P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...

  4. [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂

    题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...

  5. [题解] BZOJ 3456 洛谷 P4841 [集训队作业2013]城市规划 多项式,分治FFT

    题目 令\(f_i\)表示n个点的答案.考虑容斥,用所有连边方案减去有多个连通块的方案.枚举1号点所在的连通块大小: \(f_i=2^{i(i-1)/2}-\sum_{j>0}^{i-1}f_j ...

  6. BZOJ3675 & 洛谷3648 & UOJ104:[Apio2014]序列分割——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3675 https://www.luogu.org/problemnew/show/P3648 ht ...

  7. [洛谷P2408]不同子串个数

    题目大意:给你一个字符串,求其中本质不同的字串的个数 题解:同[洛谷P4070][SDOI2016]生成魔咒,只要最后再输出就行了 卡点:无 C++ Code: #include <cstdio ...

  8. 【CJOJ1494】【洛谷2756】飞行员配对方案问题

    题面 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其中1 名是英国飞行员,另1 ...

  9. 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...

随机推荐

  1. Linux云计算工程师

    一.Linux运维基础 二.Linux运维高级-核心知识提高 三.50台集群实战 四.200-1000台集群实战 五.shell编程企业级实战 六.数据库MySQL和NoSQL 七.LVM虚拟化和机房 ...

  2. 隐写术之steghide的使用

    steghide不是一个软件,所以下载之后解压缩就可以在命令行中使用. win+R,cmd,回车->进入到steghide.exe所在的文件夹,使用隐藏或者解锁的相应命令,即可隐藏或者解锁. 这 ...

  3. elasticsearch6.x集群环境部署

    elasticsearch集群部署安装jdk chmod 755 jdk-8u161-linux-x64.tar.gztar -zxvf jdk-8u161-linux-x64.tar.gzcp jd ...

  4. python基础 常见用法

    1.python计时器timeit模块 1)timeit 模块定义了接收两个参数的Timer类,两个参数都是字符串. 参数1:要计时的语句或者函数 参数2:为参数1构建环境的导入语句 2)Timer对 ...

  5. codeforces#1154F. Shovels Shop (dp)

    题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...

  6. Python进阶10---魔术方法*

    特殊属性 查看属性 #animal.py class Animal: x = 123 def __init__(self,name): self._name = name self.__age = 1 ...

  7. jsp使用

    session.setAttribute("sessionName",Object); 用来设置session值的,sessionName是名称,object是你要保存的对象. s ...

  8. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  9. confluence6.x安装

    一 简介 confluence是一个专业的企业知识管理与协同软件,可以用于构建企业wiki.通过它可以实现团队成员之间的协作和知识共享. 网上有关confluence的教程比较多,在此我们以confl ...

  10. Java 获取当前线程、进程、服务器ip

    /** * 获取当前线程id */ private Long getThreadId() { try { return Thread.currentThread().getId(); } catch ...