【题解】魔板—洛谷P1275。
话说好久没更博了。
最近学了好多知识懒的加进来了。
有幸认识一位大佬。
让我有了继续更博的兴趣。
但这是一个旧的题解。
我在某谷上早就发过的。
拿过来直接用就当回归了吧。
其实这道题有一个特别关键的思路。
拿着你要确定的魔板中列去枚举要匹配的魔板的每一列。
因为列是可以交换的。
而且还有最关键的一个点。
如果你确定了其中有一列对应了,那么你的魔板其实就已经固定了。行就不能变换了。
上边这个关键点的确不好想,但是想通了这个题也就好解决了。
然后就可以用map进行对应开始查询。
如果手里的魔板的数和要确定了一一对应了就YES了。
然后你手里的魔板和需要对应的魔板对应成功就可以输出YES了。
要记着在每次枚举的时候clear一次。
具体看下面代码。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cctype>
#include<map>
#define rg register
#define int long long
using namespace std;
inline int read(){
rg int s=0,f=0;
rg char ch=getchar();
while(!isdigit(ch)) f|=(ch=='-'),ch=getchar();
while(isdigit(ch)) s=(s<<1)+(s<<3)+(ch^48),ch=getchar();
return f?-s:s;
}
int n,m,k;
const int MAX=115;
int a1[MAX][MAX],a2[MAX][MAX],vis[MAX];
string S;
map<string,int>hsh;
void init(){
n=read(),m=read();
for(rg int i=1;i<=n;++i){
for(rg int j=1;j<=m;++j){
a1[i][j]=read();
}
}
for(rg int i=1;i<=n;++i){
for(rg int j=1;j<=m;++j){
a2[i][j]=read();
}
}
}
signed main(){
k=read();
++k;
while(--k){
bool flag=0;
init();//初始化。
for(rg int i=1;i<=m;++i){
hsh.clear();//每次都要清空。
for(rg int j=1;j<=n;++j){
vis[j]=(a1[j][1]==a2[j][i])?0:1;
}//枚举是否能够对应。
for(rg int j=1;j<=n;++j){
for(rg int k=1;k<=m;++k){
a1[j][k]^=vis[j];
}
}//对应就可以^1(代表翻转过了)。
for(rg int j=1;j<=m;++j){
string s=S;
for(rg int k=1;k<=n;++k){
s+=(char)(a1[k][j]+'0');
}
++hsh[s];
}//转换成字符串。
for(rg int j=1;j<=n;++j){
for(rg int k=1;k<=m;++k){
a1[j][k]^=vis[j];
}
}//还原
for(rg int j=1;j<=m;++j){
string s=S;
for(rg int k=1;k<=n;++k){
s+=(char)(a2[k][j]+'0');
}
if(!hsh[s]) break;//这里没被改过就跳过。
--hsh[s];
if(j==m) flag=1;
}
}
if(flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}
完美。
【题解】魔板—洛谷P1275。的更多相关文章
- 【题解】【洛谷 P1967】 货车运输
目录 洛谷 P1967 货车运输 原题 题解 思路 代码 洛谷 P1967 货车运输 原题 题面请查看洛谷 P1967 货车运输. 题解 思路 根据题面,假设我们有一个普通的图: 作图工具:Graph ...
- 洛谷P1275 魔板
P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...
- 洛谷 P1275 魔板
P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...
- [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂
题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...
- [题解] BZOJ 3456 洛谷 P4841 [集训队作业2013]城市规划 多项式,分治FFT
题目 令\(f_i\)表示n个点的答案.考虑容斥,用所有连边方案减去有多个连通块的方案.枚举1号点所在的连通块大小: \(f_i=2^{i(i-1)/2}-\sum_{j>0}^{i-1}f_j ...
- BZOJ3675 & 洛谷3648 & UOJ104:[Apio2014]序列分割——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3675 https://www.luogu.org/problemnew/show/P3648 ht ...
- [洛谷P2408]不同子串个数
题目大意:给你一个字符串,求其中本质不同的字串的个数 题解:同[洛谷P4070][SDOI2016]生成魔咒,只要最后再输出就行了 卡点:无 C++ Code: #include <cstdio ...
- 【CJOJ1494】【洛谷2756】飞行员配对方案问题
题面 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其中1 名是英国飞行员,另1 ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
随机推荐
- WEB框架-Django框架学习(二)- 模型层
今日份整理为模型层 1.ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库, ...
- 基于nodejs的流水线式的CRUD服务。依赖注入可以支持插件。
写代码好多年了,发现大家的思路都是写代码.写代码.写代码,还弄了个称号——码农. 我是挺无语的,我的思路是——不写代码.不写代码.不写代码! 无聊的代码为啥要重复写呢?甚至一写写好几年. 举个例子吧, ...
- 分布式存储ceph——(4)ceph 添加/删除osd
一.添加osd: 当前ceph集群中有如下osd,现在准备新添加osd:
- jquery获取元素节点
常用到的知识点,在此记录,以便查阅 $('.test').parent();//父节点 $('.test').parents();//全部父节点 $('.test').parents('.test1' ...
- (light oj 1306) Solutions to an Equation 扩展欧几里得算法
题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...
- 【刷题】牛客网看到的鹅厂ML面筋-部分问题RecSys相关
昨天下午六点半的电话面试,其实我已经有了一个不错的实习offer ,不是特别想去腾讯了,没有太怎么准备,接的电话. 整个面试15分钟,开始就是自我介绍,接着问项目,和上一段百度实习经历.问题大致如下: ...
- vue 修改数据界面没有及时更新nextTick
使用场景:有些时候,我们使用vue修改了一些数据,但是页面上的DOM还没有更新,这个时候我们就需要使用到nextTick. vm.$nextTick( [callback] ) 说明: 将回调延迟到下 ...
- JS confirm或alert对话框中的换行
如题. alert.confirm对话框的换行可以使用回车符或换行符:\n,\r 也可以使用回车符或换行符对应的unicode编码:\u000a,\u000d,这是等效的. //确认信息 var co ...
- Module build failed: Error: Cannot find module 'babel-runtime/core-js/get-it
npm i babel-loader@7.1.5 -D
- 'cordova' 不是内部或外部命令,也不是可运行的程序
问题: CMD 'cordova' 不是内部或外部命令,也不是可运行的程序: 解决:配置环境变量 1.找到npm的安装路径 :如C:\Users\AppData\Roaming\npm 2.环境 ...