最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤)
今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径)
本Tianc在刚学的时候,经常把最小生成树问题和最锻炼吧问题弄混淆,最后事实证明这两个问题是存在着相似点的。
所以还是可以参照我上一篇的博客 https://www.cnblogs.com/laysfq/p/9808088.html(此处插个"广告")
最小生成树的实质问题还是求最短的路径(是吧?肯定是的!)
kruskal算法(用边进行更新)
我的kruskal算法中用到了并查集,这样的话比较好找父结点,它的具体过程是这样的:
先将他们的权值进行映射排序,然后从最小的权值里面的取出结点数,放到树里面作为根结点,然后用并查集进行连接,每连接一个点,
把这条边所对应的权值加进去,查询下一个结点。不断的更新,直到把所有的点全部放到树里面。
下面是代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = ;
int n,m;
int u[maxn], v[maxn], w[maxn], pre[maxn], r[maxn];
int fun(int i, int j) {
return w[i] < w[j];
}
int find(int x) {
return pre[x] == x ? x : pre[x] = find(pre[x]);
}
int kruskal() {
int ans = ;
for (int i = ; i < n; ++i) pre[i] = i;
for (int i = ; i < m; ++i) r[i] = i;
sort(r, r + m, fun);
for (int i = ; i < m; ++i) {
int temp = r[i];
int x = find(u[temp]);
int y = find(v[temp]);
if (x != y) {
pre[x] = y;
ans += w[temp];
}
}
return ans;
} int main() {
while (cin >> n>> m) {
for (int i = ; i < m; ++i) {
cin >> u[i] >> v[i] >> w[i];
}
cout << kruskal() << endl;
}
}

呃呃呃,上面是程序运行的结果,第一行的5和7表示的是结点数和边的数目,下面会输入7行,例如“1 2 5”,表示的是1和2之间的权值是5。
最后输出最小生成树中权值总和。
Prim算法(用点进行更新)
这个是用点进行更新的,先将权值最小的边找出来,然后把最小的边对应的两个结点放进图中,然后利用这两个点向外不断的扩展,依据就是找出和这两个点相连且权值最小的且不在图里面的点。直到最后将所有的点访问完,构成一棵最小生成树。
附上代码:
#include<iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = ;
bool vis[MAXN];
int lowc[MAXN];
int Prim(int cost[][MAXN], int n)//点是1-n
{
int ans = ;
memset(vis, false, sizeof(vis));
vis[] = true;
for (int i = ; i<=n; i++)lowc[i] = cost[][i];
for (int i = ; i<=n; i++)
{
int minc = INF;
int p = -;
for (int j = ; j<=n; j++)
if (!vis[j] && minc>lowc[j])
{
minc = lowc[j];
p = j;
}
if (minc == INF)return -;//原图不连通
ans += minc;
vis[p] = true;
for (int j = ; j<=n; j++)
if (!vis[j] && lowc[j]>cost[p][j])
lowc[j] = cost[p][j];
}
return ans;
} int main() {
int n, m;
int a, b, c;
int cost[MAXN][MAXN];
while (cin >> n >> m) {
for (int i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) {
if (i == j) cost[i][j] = ;
else cost[i][j] = INF;
}
}
for (int i = ; i < m; ++i) {
cin >> a >> b >> c;
cost[a][b] = cost[b][a] = c;
}
cout << Prim(cost, n)<<endl;
}
}
最小生成树 kruskal算法&prim算法的更多相关文章
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 图论篇2——最小生成树算法(kurskal算法&prim算法)
基本概念 树(Tree) 如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree) 无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树. 生成 ...
- 关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...
- Kruskal和Prim算法求最小生成树
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...
- 最小生成树(Kruskal和Prim算法)
关于图的几个概念定义: 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路 ...
- 最小生成树的kruskal、prim算法
kruskal算法和prim算法 都说 kruskal是加边法,prim是加点法 这篇解释也不错:这篇 1.kruskal算法 因为是加边法,所以这个方法比较合适稀疏图.要码这个需要先懂并查集.因为我 ...
- 1.1.2最小生成树(Kruskal和Prim算法)
部分内容摘自 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意 ...
- 算法导论--最小生成树(Kruskal和Prim算法)
转载出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶 ...
- Kruskal算法&Prim算法
最小生成树是什么? Kruskal算法 图文转载自a2392008643的博客 此算法可以称为"加边法",初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最 ...
随机推荐
- 【原创】大叔经验分享(47)yarn开启日志归集
yarn开启日志归集功能,除了配置之外 yarn.log-aggregation-enable=true 还要检查/tmp/logs目录是否存在以及权限,尤其是在开启kerberos之后,有些目录可能 ...
- Salesforce知识整理(一)之Lightning Web Component Tools
目录 LWC知识整理(一) 工具 Salesforce CLI Visual Studio Code(VS Code) Developer Hub(Dev Hub) 开启Dev Hub 相关资料 茶余 ...
- C# 解压缩工具类GZip
using System; using System.Collections.Generic; using System.IO; using System.IO.Compression; using ...
- python-基于tcp协议的套接字(加强版)及粘包问题
一.基于tcp协议的套接字(通信循环+链接循环) 服务端应该遵循: 1.绑定一个固定的ip和port 2.一直对外提供服务,稳定运行 3.能够支持并发 基础版套接字: from socket impo ...
- 高可用Redis(十三):Redis缓存的使用和设计
1.缓存的受益和成本 1.1 受益 1.可以加速读写:Redis是基于内存的数据源,通过缓存加速数据读取速度 2.降低后端负载:后端服务器通过前端缓存降低负载,业务端使用Redis降低后端数据源的负载 ...
- Clipboard---将文本复制到剪切板上
第一步:链接 Clipboard 的js文件 < script src = “ https://cdn.jsdelivr.net/npm/clipboard@2/dist/clipboard.m ...
- 【玩转开源】基于Docker搭建Bug管理系统 MantisBT
环境Ubuntu18.04 + Docker 1. Docker Hub 链接:https://hub.docker.com/r/vimagick/mantisbt 这里直接使用docker命令的方式 ...
- Linux tar命令之--exclude参数 排除指定的文件或目录
https://my.oschina.net/u/3285916/blog/1632552 参数: --exclude 打包时排除不需要处理的文件或目录 说明: tar -zcf a.tar.gz 打 ...
- 【java】-- java反射机制
参考文章:https://blog.csdn.net/sinat_38259539/article/details/71799078 https://blog.csdn.net/wanderlu ...
- Android Studio 重写方法时参数命名异常
Android Studio 重写方法时参数命名异常 Android Studio 重写方法时参数名称乱掉可以通过下载相应源码解决