数据一:波士顿房价(适合做回归),以后直接用boston标记 
这行代码就读进来了
boston = sklearn.datasets.load_boston()
查询具体数据说明,用这个代码:
print boston.DESCR
输出如下:
Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order): 
- CRIM per capita crime rate by town 
- ZN proportion of residential land zoned for lots over 25,000 sq.ft. 
- INDUS proportion of non-retail business acres per town 
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 
- NOX nitric oxides concentration (parts per 10 million) 
- RM average number of rooms per dwelling 
- AGE proportion of owner-occupied units built prior to 1940 
- DIS weighted distances to five Boston employment centres 
- RAD index of accessibility to radial highways 
- TAX full-value property-tax rate per $10,000 
- PTRATIO pupil-teacher ratio by town 
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 
- LSTAT % lower status of the population 
- MEDV Median value of owner-occupied homes in $1000*s
一共506组数据,13维特征,
比如第一个维度的特征是犯罪率,第六个是每个房子平均多少房间等等。
boston.data 获取这506 * 13的特征数据
boston.target 获取对应的506 * 1的对应价格

数据二:牵牛花(适合做简单分类),标记为Iris
import sklearn.datasets
iris = sklearn.datasets.load_iris()
iris.data 获取特征
iris.target 获取对应的类别
Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
这个数据基本是个ML的入门选手都知道,一共三类牵牛花,获取特征和对应的类别标签也是同上
一共150样本,3类,特征维度为4

数据三: 糖尿病(回归问题),diabetes
这个数据包很奇怪,没有描述。我也到原本的UCI的网站上查了一下,也是没有太好的描述。
import sklearn.datasets
diabetes = sklearn.datasets.load_diabetes()
print diabetes.keys()
这样的输出只有data, targets。
我也观察了一下数据,感觉是经过额外的归一化处理的,原始的数据样貌已经看不出来了。。
下面这个图是我从网站上Copy下来的有限的描述,样本量为442,特征维度为10,每个特征元素的值都是连续的实数,在正负0.2之间。。目标这个整数值有可能是血糖。
Samples total 442 
Dimensionality 10 
Features real, -.2 < x < .2 
Targets integer 25 - 346

数据四:手写数字识别(多类分类,10个类别,从0-9)digits
import sklearn.datasets
digits = sklearn.datasets.load_digits()
总体样本量:1797,每个类别大约180个样本,每个手写数字是一个8*8的图片,每个像素是0-16的整数值。

sklearn库用法:

https://blog.csdn.net/qq_30141957/article/details/80760474

sklearn.datasates 加载测试数据的更多相关文章

  1. 机器学习:从sklearn中加载数据

    一.sklearn模块 sklearn模块下有很多子模块,常用的数据集在:sklearn.datasets模块下: 通过数据集中DESCR来查看数据集的文档: 从datasets中加载数据: impo ...

  2. 掌握sklearn系列——1 学会加载数据

    我们直接看代码: from sklearn import datasets #读取三组数据,前两个用于分类,第三个用于回归 iris = datasets.load_iris() digits = d ...

  3. (sklearn)机器学习模型的保存与加载

    需求: 一直写的代码都是从加载数据,模型训练,模型预测,模型评估走出来的,但是实际业务线上咱们肯定不能每次都来训练模型,而是应该将训练好的模型保存下来 ,如果有新数据直接套用模型就行了吧?现在问题就是 ...

  4. sklearn训练模型的保存与加载

    使用joblib模块保存于加载模型 在机器学习的过程中,我们会进行模型的训练,最常用的就是sklearn中的库,而对于训练好的模型,我们当然是要进行保存的,不然下次需要进行预测的时候就需要重新再进行训 ...

  5. sklearn模型保存与加载

    sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals impor ...

  6. [Python]-sklearn模块-机器学习Python入门《Python机器学习手册》-02-加载数据:加载数据集

    <Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...

  7. MVC学习系列6--使用Ajax加载分部视图和Json格式的数据

    Ajax的应用在平时的工作中,很是常见,这篇文章,完全是为了,巩固复习. 我们先看看不使用json格式返回分部视图: 先说需求吧: 我有两个实体,一个是出版商[Publisher],一个是书[Book ...

  8. EF如何操作内存中的数据以及加载相关联表的数据:延迟加载、贪婪加载、显示加载

    之前的EF Code First系列讲了那么多如何配置实体和数据库表的关系,显然配置只是辅助,使用EF操作数据库才是每天开发中都需要用的,这个系列讲讲如何使用EF操作数据库.老版本的EF主要是通过Ob ...

  9. Android ListView加载更多

    先看效果: ListView的footer布局: <?xml version="1.0" encoding="utf-8"?> <Relati ...

随机推荐

  1. Springboot集成FreeMarker

    Apache官网对FreeMarker的解释如下: Apache FreeMarker™是一个模板引擎 :一个基于模板和变化的数据来生成文本输出(HTML网页,电子邮件,配置文件,源代码,等等)的Ja ...

  2. 老男孩Python全栈学习 S9 日常作业 012

    1.斐波那契数列用递归实现:问第n个斐波那契数是多少 def fbnq(n): if n == 0 or n == 1: return 1 else: return fbnq(n-1)+fbnq(n- ...

  3. request redirection

    # encoding:utf-8 import reimport jsonimport randomfrom esdapi.config import BASE_URLfrom requests.se ...

  4. centos7.4下的python3.6的安装

    1.系统环境 :centos 7.4 最小化安装 2.安装过程 yum install wget      安装下载工具 wget https://www.python.org/ftp/python/ ...

  5. AIC与BIC

    首先看几个问题 1.实现参数的稀疏有什么好处? 一个好处是可以简化模型.避免过拟合.因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数作用,会引发过拟合.并且参数少了模型的解释能力会变强. 2 ...

  6. 认识Modbus协议

    1.什么是Modbus? Modbus协议是应用于电子控制器上的一种通用语言.通过此协议,控制器相互之间,控制器经由网络(例如以太网)和其它设备之间可以通信.Modbus协议定义了一个控制器能认识使用 ...

  7. 堆应用---构造Huffman树(C++实现)

    堆: 堆是STL中priority_queue的最高效的实现方式(关于priority_queue的用法:http://www.cnblogs.com/flyoung2008/articles/213 ...

  8. react 中使用阿里彩色图标

    1. 不光要引入css ,还要引入js 2. 在需要引入icon的地方添加 <svg className={styles.menuIcon} aria-hidden="true&quo ...

  9. 【vue】组件使用Deferred特性

    延迟加载组件 defer的意思是"延迟",所以deferred对象的含义就是"延迟"到未来某个点再执行. <template> <div> ...

  10. L1-Day9

    1.学习让我感觉很棒.(什么关系?动作 or 描述?主语部分是?)         [我的翻译]Learning makes me that feel good.         [标准答案]Lear ...