Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd
看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无。
然而。。有一个引理:
- gcd(a, b) = gcd(a, b - a) = gcd(b, b - a) (b > a)
证明一下:
令 gcd(a, b) = c, (b > a)
则有 a % c = 0, b % c = 0
那么 (a - b) % c = 0
令 gcd(a, b - a) = c', 假设c' != c
则有 a % c' = 0, (b - a) % c' = 0
则 (b % c' - a % c') % c' = 0, 所以 b % c' - a % c' = 0
所以 b % c' = 0
所以可以得出 c = c', 与假设矛盾, 则 c = c'.
同理可得 gcd(b, a - b) = c
证毕。
然后我们要求最小的k,那就枚举定值b-a的所有约数,看看a和b中小的那个数要凑成含这个约数的最小k是多少, 暴力找最大的lcm.
#include <bits/stdc++.h>
// 9223372036854775807
#define INF 2333333333333333333
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline ll gcd(ll a, ll b){ return a % b ? gcd(b, a % b) : b; }
inline ll lcm(ll a, ll b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
int main(){
ll a, b, c;
cin >> a >> b;
if(a > b) swap(a, b);
c = b - a;
int n = (int)(sqrt(c) + 0.5);
vector<int> v;
for(int i = 1; i <= n; i ++){
if(c % i == 0) v.push_back(i), v.push_back(c / i);
}
int k = 0; ll ans = INF;
for(int i = 0; i < v.size(); i ++){
int tmp = 0;
if(a % v[i] != 0) tmp = v[i] - a % v[i];
ll r = lcm(a + tmp, b + tmp);
if(r < ans) ans = r, k = tmp;
}
cout << k << endl;
return 0;
}
Codeforce Round #554 Div.2 C - Neko does Maths的更多相关文章
- Codeforce Round #554 Div.2 D - Neko and Aki's Prank
dp 找规律 我好菜啊好菜啊,完全没有思路. 在合法的括号序列中,左括号数一定大于等于右括号数的,所以我们可以先定义平衡度为左括号数-右括号数. 然后可以发现一个惊人的规律..就是在trie同一深度上 ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...
- Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...
- Codeforces Round #554 (Div. 2) 1152B. Neko Performs Cat Furrier Transform
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152B. Neko Performs Cat Furrier Transform 题目链接:"ht ...
- Codeforces Round #554 (Div. 2) 1152A - Neko Finds Grapes
学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152A - Neko Finds Grapes 题目链接:"https://codeforces. ...
- Codeforces Round #554 (Div. 2) B. Neko Performs Cat Furrier Transform(思维题+log2求解二进制位数的小技巧)
传送门 题意: 给出一个数x,有两个操作: ①:x ^= 2k-1; ②:x++; 每次操作都是从①开始,紧接着是② ①②操作循环进行,问经过多少步操作后,x可以变为2p-1的格式? 最多操作40次, ...
- Codeforces Round #554 (Div. 2) E Neko and Flashback (欧拉路径 邻接表实现(当前弧优化..))
就是一欧拉路径 贴出邻接表欧拉路径 CODE #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; ...
随机推荐
- Vs2017 无法调试APP
其实一切都是扯,看看有没有主活动吧 症状:能部署安装,没有快捷方式,不启动调试.XARAMIN不能在XML中配置主活动,会自动根据[Activity(Label = "AA", ...
- 36.Odoo产品分析 (四) – 工具板块(6) – 午餐管理(2)
查看Odoo产品分析系列--目录 接上一篇Odoo产品分析 (四) – 工具板块(6) – 午餐管理(1) 4 查看订单 点击"之前的订单",可以看到刚才的订单信息: 点击右边的 ...
- 轨迹系列1——一种基于路网图层的GPS轨迹优化方案
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 GPS数据正常情况下有20M左右的偏移,在遇到高楼和桥梁等情况 ...
- webpack安装、基本配置
文章结构: 什么是webpack? 安装webpack webpack基本配置 一.什么是webpack? 在学习react时发现大部分文章都是react和webpack结合使用的,所以在学react ...
- JMeter 接口测试(一)
之前的篇幅介绍了soapUI测试接口, 因为功能丰富, 操作简单, 可以参数化而深受测试小伙伴的喜欢, 今天再给大家介绍一款利器, Jmeter是Apache组织下的免费工具, 我使用的是Mac 系统 ...
- logback日志配置
第一步:加入jar包.要加入slf4j和logback的jar包,slf4j需要的jar包为slf4j-api,logback需要2个jar包(logback-classic.logback-core ...
- Kafka相关内容总结(概念和原理)
说明 主要内容是在网上的一些文章中整理出来: 加粗的字体是比较重要的内容,部分是自己的经验和理解: 整理的目的主要是为了方便查阅: 为什么需要消息系统 解耦: 在项目启动之初来预测将来项目会碰到什么需 ...
- the security settings could not be applied to the database(mysql安装error)【简记】
在安装mysql时,出现“The security settings could not be applied to the database because the connection has f ...
- HybridStart发布v1.0测试版
HybridStart是一款多webview模式的混合应用前端开发框架,本来只是作者自用的一套混合应用开发模板,为了进一步提高混合应用开发效率,近期着重在框架高通用性和易用性方面做了较大改进,比如将U ...
- SAP PS 模块,项目、WBS与网络作业概念
项目定义 项目定义是项目的唯一标识.通过项目定义,决定了包含于其中的所有WBS元素的组织结构.计划方法.预算方式以及结算方法等信息.而项目定义中的数据,则主要来源于“项目参数文件”,所以创建项目定义时 ...