题目

原题目

点这里

简易题意

现定义一个合法的字符串满足将其打散并任意组合之后能够形成回文串。

给你 \(m\) 种字母,问随机构成长度为 \(n\) 的字符串的合法子串的个数期望

对于答案期望 \(E\) ,现要求输出 \(E\cdot m^n\pmod{1000000007}\) 的值。

思路及分析

首先发现答案的输出要求很怪——要求输出 \(E\cdot m^n\pmod{1000000007}\) 的值。

对其进行分析:

假如我们有 \(k\) 个合法子串,那么 \(E=\frac{k}{m^n}\) ,而答案为 \(E\cdot m^m=\frac{k}{m^n}m^n=k\) 。

换句话说,题目要求:

在用 \(m\) 种字符构造的长度为 \(n\) 的串中合法子串的个数,对其取模 \(10^9+7\) 之后输出。

考虑枚举子串长度 \(k\) ,思考如何构造母函数。


  • 对于 \(2\nmid k\) 的情况。

是一定有且仅有一种字符出现了奇数次,其余字符出现偶数次,那么其母函数就为

\[\left (\frac{e^x+e^{-x}}{2}\right )^{m-1}\cdot \frac{e^x+e^{-x}}{2}
\]

考虑选择 \(m\) 个字符中的 \(1\) 个,方案数为 \(C_m^1\) ,那么其真正的母函数为

\[C_m^1\cdot \left (\frac{e^x+e^{-x}}{2}\right )^{m-1}\cdot \frac{e^x+e^{-x}}{2}=m\cdot \left (\frac{e^x+e^{-x}}{2}\right )^{m-1}\cdot \frac{e^x+e^{-x}}{2}
\]

二项式展开,可得

\[m\cdot \left (\frac{e^x+e^{-x}}{2}\right )^{m-1}\cdot \frac{e^x+e^{-x}}{2}=m\cdot 2^{-m}\cdot \left( \sum_{i=0}^{m-1}C_{m-1}^ie^{(2i-m+2)x}-e^{(2i-m)x} \right)
\]

将 \(e^k\) 还原,可得原式为

\[m\cdot 2^{-m} \sum_{i=0}^{m-1}C_{m-1}^i\left( \sum_{j=0}^\infty \frac{(2i-m+2)^j-(2i-m)^j}{j!}x^j\right)
\]

那么,第 \(k\) 项的系数 \(a_k\) 的等式就为

\[a_k=m\cdot 2^{-m}\cdot \sum_{i=0}^{m-1} C_{m-1}^i \frac{(2i-m+2)^k-(2i-m)^k}{k!}
\]

由于我们最后还要乘以全排,即 \(k!\) ,所以 \(a_k\) 里面的 \(k!\) 可以直接消掉,即

\[a_k=m\cdot 2^{-m}\cdot \sum_{i=0}^{m-1} C_{m-1}^i[(2i-m+2)^k-(2i-m)^k]
\]

而我们还要考虑这个长度为 \(k\) 的合法子串在最大的长度为 \(n\) 的串中出现的次数,而剩下的 \(n-k\) 个位置都是随便取字符,所以最后我们要求的是

\[a_k\cdot m^{n-k}\cdot (n-k+1)
\]

这是长度为奇数的情况。


  • 对于 \(2\mid k\) 的情况。

这种情况下,所有的字符出现次数都为偶数次,所以母函数较好构造,为

\[\left ( \frac{e^x+e^{-x}}{2} \right )^m
\]

同理,将其大力展开,可得

\[2^{-m}\cdot \left ( \sum_{i=0}^{m}C_m^i\cdot e^{(2i-m)x} \right )
\]

将 \(e^{(2i-m)x}\) 还原,可得

\[2^{-m}\cdot \sum_{i=0}^{m}C_m^i\left ( \sum_{j=0}^\infty \frac{(2i-m)^j}{j!}x^j \right )
\]

所以,第 \(k\) 项系数 \(b_k\) 为

\[b_k=2^{-m}\sum_{i=0}^{m}C_m^i\frac{(2i-m)^k}{k!}
\]

因为我们最后乘以 \(k!\) ,所以 \(b_k\) 中的 \(k!\) 可以消掉,即

\[b_k=2^{-m}\sum_{i=0}^{m}C_m^i(2i-m)^k
\]

而我们最后要求

\[b_k\cdot m^{n-k}\cdot (n-k+1)
\]


代码

这是一发 TLE 的代码,但是我不想改了...

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks") #include<cstdio> #define rep(i,__l,__r) for(register int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define fep(i,__l,__r) for(register int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define writc(a,b) fwrit(a),putchar(b)
#define mp(a,b) make_pair(a,b)
#define ft first
#define sd second
#define LL long long
#define ull unsigned long long
#define uint unsigned int
#define pii pair<int,int>
#define Endl putchar('\n')
// #define FILEOI
// #define int long long #ifdef FILEOI
#define MAXBUFFERSIZE 500000
inline char fgetc(){
static char buf[MAXBUFFERSIZE+5],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXBUFFERSIZE,stdin),p1==p2)?EOF:*p1++;
}
#undef MAXBUFFERSIZE
#define cg (c=fgetc())
#else
#define cg (c=getchar())
#endif
template<class T>inline void qread(T& x){
char c;bool f=0;
while(cg<'0'||'9'<c)f|=(c=='-');
for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
if(f)x=-x;
}
inline int qread(){
int x=0;char c;bool f=0;
while(cg<'0'||'9'<c)f|=(c=='-');
for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
return f?-x:x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}
inline int gcd(const int a,const int b){return b?gcd(b,a%b):a;}
inline void getInv(int inv[],const int lim,const int MOD){
inv[0]=inv[1]=1;for(int i=2;i<=lim;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
}
template<class T>void fwrit(const T x){
if(x<0)return (void)(putchar('-'),fwrit(-x));
if(x>9)fwrit(x/10);putchar(x%10^48);
}
inline LL mulMod(const LL a,const LL b,const LL mod){//long long multiplie_mod
return ((a*b-(LL)((long double)a/mod*b+1e-8)*mod)%mod+mod)%mod;
} const int MAXN=2000;
const int MOD=1e9+7; int C[MAXN+5][MAXN+5];
int inv2,inv2_fac[MAXN+5];
int Pow[MAXN*2+5][MAXN+5];
int n,m,T; inline int qkpow(int a,int n){
if(n<=MAXN)return Pow[a+2000][n];
int ret=1;
for(;n>0;n>>=1,a=1ll*a*a%MOD)if(n&1)ret=1ll*ret*a%MOD;
return ret;
} inline void init(){
rep(i,0,MAXN*2+2)rep(j,0,MAXN){
if(j==0)Pow[i][j]=1;
else Pow[i][j]=1ll*Pow[i][j-1]*(i-2000)%MOD;
}
inv2=qkpow(2,MOD-2);
inv2_fac[0]=1;
C[0][0]=1;
rep(i,1,MAXN){
inv2_fac[i]=1ll*inv2_fac[i-1]*inv2%MOD;
C[i][0]=C[i][i]=1;
rep(j,1,i){
C[i][j]=C[i-1][j-1]+C[i-1][j];
if(C[i][j]>MOD)C[i][j]-=MOD;
}
}
} int ans1,ans2,ans; signed main(){
#ifdef FILEOI
freopen("file.in","r",stdin);
freopen("file.out","w",stdout);
#endif
init();
qread(T);
while(T--){ans=0;
qread(n,m);
rep(k,1,n){
if(k&1){
ans1=1ll*inv2_fac[m]*(n-k+1)*qkpow(m,n-k+1)%MOD,ans2=0;
rep(i,0,m-1)ans2=(0ll+ans2+1ll*C[m-1][i]*(qkpow((i<<1)-m+2,k)-qkpow((i<<1)-m,k)))%MOD;
ans1=1ll*ans1*ans2%MOD;
}
else{
ans1=1ll*inv2_fac[m]*(n-k+1)*qkpow(m,n-k)%MOD,ans2=0;
rep(i,0,m)ans2=(0ll+ans2+1ll*C[m][i]*qkpow((i<<1)-m,k))%MOD;
ans1=1ll*ans1*ans2%MOD;
}
ans=(0ll+ans+1ll*ans1*2)%MOD;
if(ans<0)ans+=MOD;
else if(ans>MOD)ans-=MOD;
}
writc(ans,'\n');
}
return 0;
}

「题解」Just A String的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. util之Set

    1.定义: Set<Integer>set = new TreeSet<Integer>(); 注意: TreeSet 是二差树实现的,Treeset中的数据是自动排好序的,不 ...

  2. AcWing 896. 最长上升子序列 II

    #include<iostream> #include<algorithm> #include<vector> using namespace std; int m ...

  3. 找到所有的txt文件并删除

    1.find /oldboy/ -type f -name "*.txt" -delete 2.find /oldboy/ -type f -name "*.txt&qu ...

  4. html5 游戏源码下载网站,你值得拥有!

    在游戏开发的学习或工作中,利用完好的游戏源码可以事半功倍,不仅可以逆向学习开拓思维,也可以大大减少设计周期. HTML5是构建Web内容的一种语言描述方式. HTML5是Web中核心语言HTML的规范 ...

  5. myeclipse2017配置tomcat7.0

    具体配置参考这篇博客:https://www.cnblogs.com/alibaba-inc/p/9249135.html 期间可能会碰到这样一个问题,"The server does no ...

  6. 马路 树链剖分/线段树/最近公共祖先(LCA)

    题目 [问题描述] 小迟生活的城市是⼀棵树(树指的是⼀个含有 \(n\) 个节点以及 \(n-1\) 条边的⽆向连通图),节点编号从 \(1\) 到 \(n\),每条边拥有⼀个权值 \(value\) ...

  7. HTML学习(13)区块元素和内联元素

    HTML 区块元素 大多数 HTML 元素被定义为块级元素或内联元素. 块级元素在浏览器显示时,通常会以新行来开始(和结束). 实例: <h1>, <p>, <ul> ...

  8. IDEA格式化代码快捷键失灵原因

    网易云音乐快捷键与IDEA快捷键冲突了!!!!!!!坑爹

  9. JS json对象(Object)和字符串(String)互转方法

    [JS json对象(Object)和字符串(String)互转方法] 参考:https://blog.csdn.net/wenqianla2550/article/details/78232706 ...

  10. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...