Learning to Rank

  • pointwise

\[
L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^{2}
\]

只考虑给定查询下单个文档的绝对相关度,不考虑其他文档和给定查询的相关度.

输入空间中样本是单个 doc(和对应 query)构成的特征向量;

输出空间中样本是单个 doc(和对应 query)的相关度;

假设空间中样本是打分函数;

损失函数评估单个 doc 的预测得分和真实得分之间差异。

  • PairWise

\[
L\left(h ; x_{u}, x_{v}, y_{u, v}\right)=\left(y_{u, v}-P\left(x_{u} \succ x_{v}\right)\right)^{2}+\left(y_{v, u}-P\left(x_{u} \prec x_{v}\right)\right)^{2}
\]

考虑给定查询下两个文档直接的相对相关度。比如给定查询query的一个真实文档序列,我们只需要考虑任意两个相关度不同的文档直接的相对相关度。

输入应该是两个item的特征,最重的输出应该是两个item的大小关系

输入空间中样本是(同一 query 对应的)两个 doc(和对应 query)构成的两个特征向量;
输出空间中样本是 pairwise preference;
假设空间中样本是二变量函数;
损失函数评估 doc pair 的预测 preference 和真实 preference 之间差异

  • ListWise

\[
L(F(x),y) = exp(-NDCG) \\NDCG = DCG/IDCG \\ DCG = g_i+\sum_{i=2}\frac{g_i}{log_2^{i}}
\]

\(g_i\) 表示对应项的增益(得分)。NDCG(Normalized Discounted Cumulative Gain); IDCG (Ideal DCG)

举个栗子:

搜索结果 3、1、2、3、2 ; DCG = 3+(1+1.26+1.5+0.86 )=7.62

IDCG下的分值排列顺序是3、3、2、2、1 ; IDCG=3 + (3+1.26+1+0.43)=8.69

直接考虑给定查询下的文档集合的整体序列,直接优化模型输出的文档序列

输入空间中样本是(同一 query 对应的)所有 doc(与对应的 query)构成的多个特征向量(列表);
输出空间中样本是这些 doc(和对应 query)的相关度排序列表或者排列;
假设空间中样本是多变量函数,对于 docs 得到其排列,实践中,通常是一个打分函数,根据打分函数对所有docs 的打分进行排序得到 docs 相关度的排列;

reference:

https://blog.csdn.net/lipengcn/article/details/80373744

https://blog.csdn.net/u014313009/article/details/38944687

搜索排序-learning to Rank简介的更多相关文章

  1. 【机器学习】Learning to Rank 简介

    Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...

  2. Learning to Rank 简介

    转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...

  3. Learning to Rank简介

    Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...

  4. 推荐排序---Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点

    转载:https://blog.csdn.net/lipengcn/article/details/80373744 Ranking 是信息检索领域的基本问题,也是搜索引擎背后的重要组成模块. 本文将 ...

  5. [Machine Learning] Learning to rank算法简介

    声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...

  6. Learning to Rank之Ranking SVM 简介

    排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...

  7. Learning to Rank之RankNet算法简介

    排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...

  8. 【机器学习】Learning to Rank之Ranking SVM 简介

    Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...

  9. 芝麻HTTP: Learning to Rank概述

    Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...

随机推荐

  1. SDUT-3342_数据结构实验之二叉树三:统计叶子数

    数据结构实验之二叉树三:统计叶子数 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 已知二叉树的一个按先序遍历输入的字符 ...

  2. 转载:ubuntu 下的dpkg 的用法

    dpkg是一个Debian的一个命令行工具,它可以用来安装.删除.构建和管理Debian的软件包. 下面是它的一些命令解释: 1)安装软件 命令行:dpkg -i <.deb file name ...

  3. Pytorch使用tensorboardX网络结构可视化。超详细!!!

    https://www.jianshu.com/p/46eb3004beca 1 引言 我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorbo ...

  4. python小数据池 is和 == 再谈编码

    1. 小数据池, id() 小数据池针对的是: int, str, bool 在py文件中几乎所有的字符串都会缓存. id() 查看变量的内存地址 2. is和==的区别 is 比较的是内存地址 == ...

  5. 利用mock生成随机的东西

    Mock.mock({ "list|100": [ { 'id|+1': 1,//id排列 'color': '@color()',//随机颜色 'date': '@datetim ...

  6. display:flex; justify-content:space-between; 最后一行显示内容无法靠左显示

    给父元素添加同每行展示列数一样(展示列表最多的)的子元素. 子元素设置样式: width:同子元素一样的width : height:0;

  7. BERT-Pytorch demo初探

    https://zhuanlan.zhihu.com/p/50773178 概述 本文基于 pytorch-pretrained-BERT(huggingface)版本的复现,探究如下几个问题: py ...

  8. H3C 快速以太网和千兆以太网

  9. H3C ISDN DCC备份配置示例

  10. [转]安卓加固之so文件加固

    一.前言 最近在学习安卓加固方面的知识,看到了jiangwei212的博客,其中有对so文件加固的两篇文章通过节加密函数和通过hash段找到函数地址直接加密函数,感觉写的特别好,然后自己动手实践探索s ...