搜索排序-learning to Rank简介
Learning to Rank

- pointwise
\[
L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^{2}
\]
只考虑给定查询下单个文档的绝对相关度,不考虑其他文档和给定查询的相关度.
输入空间中样本是单个 doc(和对应 query)构成的特征向量;
输出空间中样本是单个 doc(和对应 query)的相关度;
假设空间中样本是打分函数;
损失函数评估单个 doc 的预测得分和真实得分之间差异。
- PairWise
\[
L\left(h ; x_{u}, x_{v}, y_{u, v}\right)=\left(y_{u, v}-P\left(x_{u} \succ x_{v}\right)\right)^{2}+\left(y_{v, u}-P\left(x_{u} \prec x_{v}\right)\right)^{2}
\]
考虑给定查询下两个文档直接的相对相关度。比如给定查询query的一个真实文档序列,我们只需要考虑任意两个相关度不同的文档直接的相对相关度。
输入应该是两个item的特征,最重的输出应该是两个item的大小关系
输入空间中样本是(同一 query 对应的)两个 doc(和对应 query)构成的两个特征向量;
输出空间中样本是 pairwise preference;
假设空间中样本是二变量函数;
损失函数评估 doc pair 的预测 preference 和真实 preference 之间差异
- ListWise
\[
L(F(x),y) = exp(-NDCG) \\NDCG = DCG/IDCG \\ DCG = g_i+\sum_{i=2}\frac{g_i}{log_2^{i}}
\]
\(g_i\) 表示对应项的增益(得分)。NDCG(Normalized Discounted Cumulative Gain); IDCG (Ideal DCG)
举个栗子:
搜索结果 3、1、2、3、2 ; DCG = 3+(1+1.26+1.5+0.86 )=7.62
IDCG下的分值排列顺序是3、3、2、2、1 ; IDCG=3 + (3+1.26+1+0.43)=8.69
直接考虑给定查询下的文档集合的整体序列,直接优化模型输出的文档序列
输入空间中样本是(同一 query 对应的)所有 doc(与对应的 query)构成的多个特征向量(列表);
输出空间中样本是这些 doc(和对应 query)的相关度排序列表或者排列;
假设空间中样本是多变量函数,对于 docs 得到其排列,实践中,通常是一个打分函数,根据打分函数对所有docs 的打分进行排序得到 docs 相关度的排列;
reference:
https://blog.csdn.net/lipengcn/article/details/80373744
https://blog.csdn.net/u014313009/article/details/38944687
搜索排序-learning to Rank简介的更多相关文章
- 【机器学习】Learning to Rank 简介
Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...
- Learning to Rank 简介
转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...
- Learning to Rank简介
Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...
- 推荐排序---Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点
转载:https://blog.csdn.net/lipengcn/article/details/80373744 Ranking 是信息检索领域的基本问题,也是搜索引擎背后的重要组成模块. 本文将 ...
- [Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...
- Learning to Rank之Ranking SVM 简介
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...
- Learning to Rank之RankNet算法简介
排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...
- 【机器学习】Learning to Rank之Ranking SVM 简介
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...
- 芝麻HTTP: Learning to Rank概述
Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...
随机推荐
- Session机制在页面间保持Cookie——大街网
解决Cookie有效期,页面间Cookie传递 解決大规模,长期有效采集. 之前做一个项目,要采集招聘网站的职位信息,智联,拉钩,中华英才,BOOS,大街网,写完了前4个,大街网数据加载方式是AJAX ...
- oracle函数 end
[功能]当:<表达式>=<表达式条件值1……n> 时,返回对应 <满足条件时返回值1……n> 当<表达式条件值1……n>不为条件表达式时,与函数deco ...
- offsetheight 和clientheight、scrollheight、scrollTop区别
clientHeight:元素客户区的大小,指的是元素内容及其边框所占据的空间大小(经过实践取出来的大多是视口大小) scrollHeight: 滚动大小,指的是包含滚动内容的元素大小(元素内容的总高 ...
- 谷歌BERT预训练源码解析(三):训练过程
目录前言源码解析主函数自定义模型遮蔽词预测下一句预测规范化数据集前言本部分介绍BERT训练过程,BERT模型训练过程是在自己的TPU上进行的,这部分我没做过研究所以不做深入探讨.BERT针对两个任务同 ...
- 命名分组(?<name>....)
捕获组分为: 普通捕获组(Expression) 命名捕获组(?Expression) 普通捕获组 从正则表达式左侧开始,每出现一个左括号"("记做一个分组,分组编号从 1 开始. ...
- OracleSpatial函数
Oracle_spatial的函数 一sdo_Geom包的函数: 用于表示两个几何对象的关系(结果为True/False)的函数:RELATE,WITHIN_DISTANCE 验证的函数:VALIDA ...
- Refs
一.The ref callback attribute ref:reference,父组件引用子组件 组件并不是真实的 DOM节点,而是存在于内存之中的一种数据结构,叫做虚拟DOM.只有当它插入文档 ...
- 移动端Chrome Inspect调试 (Android通过Chrome Inspect调试WebView的H5)(ios手机safari,chrome调试 windows)(如果inspect的时候,是空白)
ios +chrome调试 引用https://segmentfault.com/a/1190000015428430 iTunes ios-webkit-debug-proxy-1.8-win64- ...
- jieba gensim 相似度实现
博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html 简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字 ...
- Failed to execute goal org.springframework.boot:spring-boot-maven-plugin:2.1.3.RELEASE:repackage (repackage)
解决方案是删除 pom.xml配置的问题 <build> <plugins> <plugin> <groupId>org.springframework ...