Learning to Rank

  • pointwise

\[
L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^{2}
\]

只考虑给定查询下单个文档的绝对相关度,不考虑其他文档和给定查询的相关度.

输入空间中样本是单个 doc(和对应 query)构成的特征向量;

输出空间中样本是单个 doc(和对应 query)的相关度;

假设空间中样本是打分函数;

损失函数评估单个 doc 的预测得分和真实得分之间差异。

  • PairWise

\[
L\left(h ; x_{u}, x_{v}, y_{u, v}\right)=\left(y_{u, v}-P\left(x_{u} \succ x_{v}\right)\right)^{2}+\left(y_{v, u}-P\left(x_{u} \prec x_{v}\right)\right)^{2}
\]

考虑给定查询下两个文档直接的相对相关度。比如给定查询query的一个真实文档序列,我们只需要考虑任意两个相关度不同的文档直接的相对相关度。

输入应该是两个item的特征,最重的输出应该是两个item的大小关系

输入空间中样本是(同一 query 对应的)两个 doc(和对应 query)构成的两个特征向量;
输出空间中样本是 pairwise preference;
假设空间中样本是二变量函数;
损失函数评估 doc pair 的预测 preference 和真实 preference 之间差异

  • ListWise

\[
L(F(x),y) = exp(-NDCG) \\NDCG = DCG/IDCG \\ DCG = g_i+\sum_{i=2}\frac{g_i}{log_2^{i}}
\]

\(g_i\) 表示对应项的增益(得分)。NDCG(Normalized Discounted Cumulative Gain); IDCG (Ideal DCG)

举个栗子:

搜索结果 3、1、2、3、2 ; DCG = 3+(1+1.26+1.5+0.86 )=7.62

IDCG下的分值排列顺序是3、3、2、2、1 ; IDCG=3 + (3+1.26+1+0.43)=8.69

直接考虑给定查询下的文档集合的整体序列,直接优化模型输出的文档序列

输入空间中样本是(同一 query 对应的)所有 doc(与对应的 query)构成的多个特征向量(列表);
输出空间中样本是这些 doc(和对应 query)的相关度排序列表或者排列;
假设空间中样本是多变量函数,对于 docs 得到其排列,实践中,通常是一个打分函数,根据打分函数对所有docs 的打分进行排序得到 docs 相关度的排列;

reference:

https://blog.csdn.net/lipengcn/article/details/80373744

https://blog.csdn.net/u014313009/article/details/38944687

搜索排序-learning to Rank简介的更多相关文章

  1. 【机器学习】Learning to Rank 简介

    Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...

  2. Learning to Rank 简介

    转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...

  3. Learning to Rank简介

    Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...

  4. 推荐排序---Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点

    转载:https://blog.csdn.net/lipengcn/article/details/80373744 Ranking 是信息检索领域的基本问题,也是搜索引擎背后的重要组成模块. 本文将 ...

  5. [Machine Learning] Learning to rank算法简介

    声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...

  6. Learning to Rank之Ranking SVM 简介

    排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...

  7. Learning to Rank之RankNet算法简介

    排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...

  8. 【机器学习】Learning to Rank之Ranking SVM 简介

    Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...

  9. 芝麻HTTP: Learning to Rank概述

    Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...

随机推荐

  1. Redis源码解析:05跳跃表

    一:基本概念 跳跃表是一种随机化的数据结构,在查找.插入和删除这些字典操作上,其效率可比拟于平衡二叉树(如红黑树),大多数操作只需要O(log n)平均时间,但它的代码以及原理更简单.跳跃表的定义如下 ...

  2. 直击 KubeCon 现场 | 阿里云 Hands-on Workshop 亮点回顾

    相关文章链接[合集]规模化落地云原生,阿里云亮相 KubeCon China沉淀九年,一文看清阿里云原生大事件 2019 年 6 月 24 日至 26 日,KubeCon + CloudNativeC ...

  3. HDFS Concepts-blocks

  4. 「HNOI2015」菜肴制作

    「HNOI2015」菜肴制作 这道题想到了其实还挺水的,一开始我直接用小根堆拓扑然后就爆0了,然后我又用十万个堆搜索,T30,还是xkl告诉我要倒着拓扑. 首先要建反图,对于入度为0的点,较小的点先输 ...

  5. 「POI2012」约会 Rendezvous

    #2691. 「POI2012」约会 Rendezvous 这题我简直不想说什么了,什么素质,卡常数…… “每个顶点有且仅有一条出边”,所以是一道基环树的题,首先tarjan缩点,在缩完点后的图上求a ...

  6. python如何自动发送邮件

    #coding=utf-8 import smtplib from email.mime.text import MIMEText from email.mime.application import ...

  7. uva 11916 Emoogle Grid (BSGS)

    UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...

  8. Android Animation动画实战(一): 从布局动画引入ListView滑动时,每一Item项的显示动画

    前言: 之前,我已经写了两篇博文,给大家介绍了Android的基础动画是如何实现的,如果还不清楚的,可以点击查看:Android Animation动画详解(一): 补间动画 及 Android An ...

  9. hdu 2410 Barbara Bennett's Wild Numbers

    Problem - 2410 挺好玩的一道题目.这道题的意思是给出一个模糊值以及一个确定值,要求求出模糊值中大于确定值的个数有多少. 这题我是直接用dfs的方法搜索的,对于每一位如果之前位置的形成的数 ...

  10. webkit浏览器下多行显示,有省略号效果

    多行显示情况 display: -webkit-box; -webkit-line-clamp: 3; -webkit-box-orient: vertical; overflow: hidden; ...