搜索排序-learning to Rank简介
Learning to Rank

- pointwise
\[
L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^{2}
\]
只考虑给定查询下单个文档的绝对相关度,不考虑其他文档和给定查询的相关度.
输入空间中样本是单个 doc(和对应 query)构成的特征向量;
输出空间中样本是单个 doc(和对应 query)的相关度;
假设空间中样本是打分函数;
损失函数评估单个 doc 的预测得分和真实得分之间差异。
- PairWise
\[
L\left(h ; x_{u}, x_{v}, y_{u, v}\right)=\left(y_{u, v}-P\left(x_{u} \succ x_{v}\right)\right)^{2}+\left(y_{v, u}-P\left(x_{u} \prec x_{v}\right)\right)^{2}
\]
考虑给定查询下两个文档直接的相对相关度。比如给定查询query的一个真实文档序列,我们只需要考虑任意两个相关度不同的文档直接的相对相关度。
输入应该是两个item的特征,最重的输出应该是两个item的大小关系
输入空间中样本是(同一 query 对应的)两个 doc(和对应 query)构成的两个特征向量;
输出空间中样本是 pairwise preference;
假设空间中样本是二变量函数;
损失函数评估 doc pair 的预测 preference 和真实 preference 之间差异
- ListWise
\[
L(F(x),y) = exp(-NDCG) \\NDCG = DCG/IDCG \\ DCG = g_i+\sum_{i=2}\frac{g_i}{log_2^{i}}
\]
\(g_i\) 表示对应项的增益(得分)。NDCG(Normalized Discounted Cumulative Gain); IDCG (Ideal DCG)
举个栗子:
搜索结果 3、1、2、3、2 ; DCG = 3+(1+1.26+1.5+0.86 )=7.62
IDCG下的分值排列顺序是3、3、2、2、1 ; IDCG=3 + (3+1.26+1+0.43)=8.69
直接考虑给定查询下的文档集合的整体序列,直接优化模型输出的文档序列
输入空间中样本是(同一 query 对应的)所有 doc(与对应的 query)构成的多个特征向量(列表);
输出空间中样本是这些 doc(和对应 query)的相关度排序列表或者排列;
假设空间中样本是多变量函数,对于 docs 得到其排列,实践中,通常是一个打分函数,根据打分函数对所有docs 的打分进行排序得到 docs 相关度的排列;
reference:
https://blog.csdn.net/lipengcn/article/details/80373744
https://blog.csdn.net/u014313009/article/details/38944687
搜索排序-learning to Rank简介的更多相关文章
- 【机器学习】Learning to Rank 简介
Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...
- Learning to Rank 简介
转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...
- Learning to Rank简介
Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...
- 推荐排序---Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点
转载:https://blog.csdn.net/lipengcn/article/details/80373744 Ranking 是信息检索领域的基本问题,也是搜索引擎背后的重要组成模块. 本文将 ...
- [Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...
- Learning to Rank之Ranking SVM 简介
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...
- Learning to Rank之RankNet算法简介
排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...
- 【机器学习】Learning to Rank之Ranking SVM 简介
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...
- 芝麻HTTP: Learning to Rank概述
Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...
随机推荐
- Redis源码解析:05跳跃表
一:基本概念 跳跃表是一种随机化的数据结构,在查找.插入和删除这些字典操作上,其效率可比拟于平衡二叉树(如红黑树),大多数操作只需要O(log n)平均时间,但它的代码以及原理更简单.跳跃表的定义如下 ...
- 直击 KubeCon 现场 | 阿里云 Hands-on Workshop 亮点回顾
相关文章链接[合集]规模化落地云原生,阿里云亮相 KubeCon China沉淀九年,一文看清阿里云原生大事件 2019 年 6 月 24 日至 26 日,KubeCon + CloudNativeC ...
- HDFS Concepts-blocks
- 「HNOI2015」菜肴制作
「HNOI2015」菜肴制作 这道题想到了其实还挺水的,一开始我直接用小根堆拓扑然后就爆0了,然后我又用十万个堆搜索,T30,还是xkl告诉我要倒着拓扑. 首先要建反图,对于入度为0的点,较小的点先输 ...
- 「POI2012」约会 Rendezvous
#2691. 「POI2012」约会 Rendezvous 这题我简直不想说什么了,什么素质,卡常数…… “每个顶点有且仅有一条出边”,所以是一道基环树的题,首先tarjan缩点,在缩完点后的图上求a ...
- python如何自动发送邮件
#coding=utf-8 import smtplib from email.mime.text import MIMEText from email.mime.application import ...
- uva 11916 Emoogle Grid (BSGS)
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...
- Android Animation动画实战(一): 从布局动画引入ListView滑动时,每一Item项的显示动画
前言: 之前,我已经写了两篇博文,给大家介绍了Android的基础动画是如何实现的,如果还不清楚的,可以点击查看:Android Animation动画详解(一): 补间动画 及 Android An ...
- hdu 2410 Barbara Bennett's Wild Numbers
Problem - 2410 挺好玩的一道题目.这道题的意思是给出一个模糊值以及一个确定值,要求求出模糊值中大于确定值的个数有多少. 这题我是直接用dfs的方法搜索的,对于每一位如果之前位置的形成的数 ...
- webkit浏览器下多行显示,有省略号效果
多行显示情况 display: -webkit-box; -webkit-line-clamp: 3; -webkit-box-orient: vertical; overflow: hidden; ...