P1306 斐波那契公约数

题目描述

对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少?

输入输出格式

输入格式:

两个正整数n和m。(n,m<=10^9)

注意:数据很大

输出格式:

Fn和Fm的最大公约数。

由于看了大数字就头晕,所以只要输出最后的8位数字就可以了。

输入输出样例

输入样例#1:

4 7

输出样例#1:

1

说明

用递归&递推会超时

用通项公式也会超时


前置芝士

矩阵快速幂,更相减损术,欧几里得算法。

思路

初看此题,毫无头绪,其实并不难。

结论很简单,设\(f[i]\)表示斐波那契数列第\(i\)个,则有\(\gcd(f[i],f[j])=f[\gcd(i,j)]\)。

为什么呢?

显然,当\(i=j\)时,结论成立。

假设\(i<j\),我们设\(f[i]=a,f[i+1]=b,f[i+2]=a+b...\)

很明显,\(f[j]=f[j-i]\times b+f[j-i-1]\times a\)

因此\(\gcd(f[i],f[j])=\gcd(f[i],f[j-i]\times f[i+1]+f[j-i-1]\times f[i])\)

即\(\gcd(f[i],f[j])=\gcd(f[i],f[j-i]\times f[i+1])\)

引理:\(\gcd(f[i],f[i+1])=1\)

证明:

显然,\(\gcd(f[1],f[2])=1\)成立。

\(\gcd(f[2],f[3])=\gcd(f[2],f[3]-f[2])=\gcd(f[2],f[1])=1\)

\(\gcd(f[3],f[4])=\gcd(f[3],f[4]-f[3])=\gcd(f[3],f[2])=1\)

...

QED.

回到\(\gcd(f[i],f[j])=\gcd(f[i],f[j-i]\times f[i+1])\)这个式子,因为\(\gcd(f[i],f[i+1])=1\),因此\(\gcd(f[i],f[j])=\gcd(f[i],f[j-i]\times f[i+1])=\gcd(f[i],f[j-i])\)

发现了吧?这和更相减损术的\(\gcd(i,j)=\gcd(i,i-j)\)蜜汁相似,没错,就是公约数!\(\gcd(f[i],f[j])\)就等于\(f[\gcd(i,j)]\)!

然后用矩阵快速幂求出\(f[\gcd(n,m)]\)即可。

代码

#include<bits/stdc++.h>
using namespace std;
#define Re register int N, M; int gcd( int x, int y ){ return y ? gcd( y, x % y ) : x; } int a[3][3], b[3][3], c[3][3]; inline void Times( int a[3][3], int b[3][3] ){
memset( c, 0, sizeof c );
for ( int i = 1; i <= 2; ++i )
for ( int k = 1; k <= 2; ++k )
for ( int j = 1; j <= 2; ++j )
c[i][j] = (int)( ( c[i][j] + 1ll * a[i][k] * b[k][j] ) % 100000000 );
} int main(){
scanf( "%d%d", &N, &M );
N = gcd( N, M ) - 2;
if ( N <= 0 ){ printf( "1\n" ); return 0; }
a[1][1] = a[1][2] = b[1][1] = b[1][2] = b[2][1] = 1;
for ( int i = N; i; i >>= 1 ){
if ( i & 1 ) Times( a, b ), memcpy( a, c, sizeof a );
Times( b, b ), memcpy( b, c, sizeof b );
}
printf( "%d\n", a[1][1] );
return 0;
}

「洛谷P1306」斐波那契公约数 解题报告的更多相关文章

  1. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  2. 「洛谷P2397」 yyy loves Maths VI (mode) 解题报告

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  3. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  4. 【洛谷P1962】斐波那契数列

    斐波那契数列 题目链接:https://www.luogu.org/problemnew/show/P1962 矩阵A 1,1 1,0 用A^k即可求出feb(k). 矩阵快速幂 #include&l ...

  5. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  6. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  7. 【剑指Offer】10- I. 斐波那契数列 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:htt ...

  8. 洛谷P1349 广义斐波那契数列

    传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...

  9. hdu4549_M斐波那契数列 解题报告

    Solution: 1.快速幂:数/矩阵 2.以证明1000000007是素数. 费马小定理: 若p是素数,gcd(a,p)=1,则a^(p-1)1(mod p). 若a^b mod p 中b很大,则 ...

随机推荐

  1. hdu 3832 Earth Hour(最短路变形)

    Earth Hour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  2. H3C ISDN网络构成

  3. webkit浏览器下多行显示,有省略号效果

    多行显示情况 display: -webkit-box; -webkit-line-clamp: 3; -webkit-box-orient: vertical; overflow: hidden; ...

  4. CSS优化,提高性能的方法有哪些?

    1,首推的是合并css文件,如果页面加载10个css文件,每个文件1k,那么也要比只加载一个100k的css文件慢. 2,减少css嵌套,最好不要套三层以上. 3,不要在ID选择器前面进行嵌套,ID本 ...

  5. pytorch入坑一 | Tensor及其基本操作

    由于之前的草稿都没了,现在只有重写…. 我好痛苦 本章只是对pytorch的常规操作进行一个总结,大家看过有脑子里有印象就好,知道有这么个东西,需要的时候可以再去详细的看,另外也还是需要在实战中多运用 ...

  6. 2019-10-5-dotnet-core-获取-MacAddress-地址方法

    title author date CreateTime categories dotnet core 获取 MacAddress 地址方法 lindexi 2019-10-05 10:44:10 + ...

  7. Springboot 自定义多个404页面

    在Springboot中,可以通过修改配置.或者在static文件夹下添加error文件夹引入个性化的404模版.但是如果需要针对不同url地址规则,返回不同样式的404页面,则难以实现了.针对这个问 ...

  8. java 字节→字符转换流

    OutputStreamWriter:把字节输出流对象转成字符输出流对象 InputStreamReader:把字节输入流对象转成字符输入流对象 FileWriter和FileReader分别是Out ...

  9. SpringBoot 上传文件到linux服务器 异常java.io.FileNotFoundException: /tmp/tomcat.50898……解决方案

    SpringBoot 上传文件到linux服务器报错java.io.FileNotFoundException: /tmp/tomcat.50898-- 报错原因: 解决方法 java.io.IOEx ...

  10. C# 通过 probing 指定 dll 寻找文件夹

    在很大的项目开发,会发现项目引用的 dll 会很多,我想要按照不同的功能,将不同的 dll 放在不同的文件夹 简单的方法是通过修改 App.config 文件指定文件夹,如将文件移动到 abc\12 ...