论文阅读笔记(九)【TIFS2020】:True-Color and Grayscale Video Person Re-Identification
Introduction
(1)Motivation:
在现实场景中,摄像头会因为故障呈现灰白色,或者为了节省视频的存储空间而人工设置为灰白色。灰度图像(grayscale images)由8位存储,而彩色图像由24位存储。在节省存储空间的同时,也带来了信息丢失的问题,增加了行人重识别的难度。

通过对同一张照片的彩色版和灰度版进行余弦相似度(cosine similarity)计算,发现两者相似度在0.8左右,即灰度图像损失了约20%的有效信息。

定义本文彩色-灰度视频间行人重识别的问题:Color to Gray Video Person Re-identification (CGVPR).
(2)Contribution:
① 提供了一个新的基准数据集,命名为 true-color and grayscale video person re-identification dataset (CGVID);
② 提出了解决 CGVPR 的方法,命名为 semi-coupled dictionary pair learning (SDPL).
Dataset Description


Our Approach
(1)视频重构错误项(video reconstruction error term):
彩色视频特征集合:A = [A1, A2, ..., AN]
灰度视频特征集合:B = [B1, B2, ..., BN]
其中 Ai = [ai1, ai2, ..., aini] 表示第 i 个视频的特征集合,aij 表示第 i 个视频的第 j 个步行周期的特征,每个特征维度为 d.
定义:彩色、灰度字典矩阵 DC 和 DG,A 和 B 通过字典矩阵的编码后的矩阵为 X 和 Y,视频内投影矩阵为 W 和 V.
视频重构错误项定义(目的是提高保真度):

异构视频投影项定义(目的是提高同一视频间的收敛):

其中 μi 定义为第 i 个行人视频的特征集合的中心.
(2)半耦合映射项(semi-coupled mapping term):
目的是为了使得编码后的两个矩阵更接近,通过学习映射矩阵 P 来弥补灰度图像的信息损失. 该项定义为:

(3)距离区分度项(discriminative fidelity term):
目的是为了缩小相同行人视频间距离,增大不同行人视频间距离. 该项定义为:

(4)目标函数:

其中 α 和 λ 是平衡因子,ρ1 和 ρ2 分别控制了视频间投影矩阵和视频内映射的效果,一般设置为 1 / N.
Ereg为正则化项目,等于:
.
模型的思路:

The Optimization of SDPL
(1)更新 W 和 V:

通过求导得到解:


推导过程:中间跳过了计算步骤,详见论文笔记3【传送门】. V 的计算类似,略.

(2)更新 X 和 Y:


通过求导得到解:


推导过程:得到的解有细微差别(Y 的求解同理,略). 这里 |S| = 1.

(3)更新 DC 和 DG:

使用ADMM算法进行求解.
(4)更新 P:

通过求导得出解:

推导过程:得到的解有细微差别.

(5)优化算法:

(6)视频匹配:
① 对灰度视频特征 F 进行编码(设置 Y = 0):

② 对彩色视频特征 C 进行编码(设置 X = 0):

③ 计算两者距离,并挑选出距离最近的匹配视频.
④ 算法流程:

Experiments
(1)实验设置:
① 特征提取:STFV3D、深度学习特征PCB.
② 参数设置:α = 0.04,β = 0.06,λ = 0.2, ρ1 = ρ2 = 1 / N. 5-fold cross validation.
③ 对比方法:
字典学习方法:STFV3D,TDL,KISSME,XQDA,SI2DL,JDML;
深度学习方法:RNNCNN,ASTPN,DeepZero,PCB.
(2)实验结果:

论文阅读笔记(九)【TIFS2020】:True-Color and Grayscale Video Person Re-Identification的更多相关文章
- 论文阅读笔记(七)【TIP2018】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics
是由一篇 IJCAI2016 扩的期刊. 该篇会议论文的阅读笔记[传送门] 期刊扩充的部分:P-SI2DL 1.问题描述: 在会议论文中介绍的SI2DL方法采用了视频三元组作为视频关系(是否匹配)的逻 ...
- 论文阅读笔记九:SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NETS AND FULLY CONNECTED CRFS (DeepLabv1)(CVPR2014)
论文链接:https://arxiv.org/abs/1412.7062 摘要 该文将DCNN与概率模型结合进行语义分割,并指出DCNN的最后一层feature map不足以进行准确的语义分割,DCN ...
- 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics
摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...
- 论文阅读笔记(四)【TIP2017】:Video-Based Pedestrian Re-Identification by Adaptive Spatio-Temporal Appearance Model
Introduction (1)背景知识: ① 人脸识别是具有高可靠性的生物识别技术,但在低解析度(resolution)和姿态变化下效果很差. ② 步态(gait)是全身行为的生物识别特征,大部分步 ...
- 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 Word Embeddings A Survey
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- Nature/Science 论文阅读笔记
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...
随机推荐
- 一个故事看懂Linux文件权限管理
前情回顾: 我通过open这个系统调用虫洞来到了内核空间,又在老爷爷的指点下来到了sys_open的地盘,即将开始打开文件的工作. 详情参见:内核地址空间大冒险:系统调用 open系统调用链 我是一个 ...
- js—数组那些事儿
数组维度升级 创建一维数组 //创建一维数组 var a=[]; var b=new Array(); var c=[1,2,'w']; var d=[1,2,[1,2]]; 创建二维数组 var c ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
- ABP框架迁移到Mysql
ABP框架 .NetCore3.x版本 1.首先找到xxx.Core 项目,添加引用Microsoft.EntityFrameworkCore.Tools 2.找到xxx.EntityFramewor ...
- SAP 事务代码 ME31K 报错 - 不含来自带工厂分配的供应商的物料的采购没有被定义 -
SAP 事务代码 ME31K 报错 - 不含来自带工厂分配的供应商的物料的采购没有被定义 - 近日收到业务团队的报错说,试图创建合同,报错如下: 不含来自带工厂分配的供应商的物料的采购没有被定义 这个 ...
- [Linux] ubuntu下yarn依赖管理工具的安装和使用
Yarn 对你的代码来说是一个包管理器, 你可以通过它使用全世界开发者的代码, 或者分享自己的代码.Yarn 做这些快捷.安全.可靠,所以你不用担心什么.通过Yarn你可以使用其他开发者针对不同问题的 ...
- OpenCV检测Marker位姿
Marker检测采用小觅相机,可以实时检测Marker的位置和姿态,效果如下: 参考代码如下: #include "pch.h" #include <Eigen/Dense& ...
- PHP0025:PHP 博客项目开发2
- 一个最简单的Dockfile实践
一:一个Dockerfile文件 FROM bash COPY . /usr/jinliang/ WORKDIR /usr/jinliang/ CMD [ "sh", " ...
- Blazor client-side + webapi (.net core 3.1) 添加jwt验证流程(非host)第一步
第一步,设置并检查CROS跨域请求 因为我们并不打算将Blazor 由webapi来进行host,所以Blazor和api将是两个域名,这样操作即方便以后单独使用Blazor来写前端,但后端采用已有或 ...