Introduction

(1)Motivation:
在现实场景中,摄像头会因为故障呈现灰白色,或者为了节省视频的存储空间而人工设置为灰白色。灰度图像(grayscale images)由8位存储,而彩色图像由24位存储。在节省存储空间的同时,也带来了信息丢失的问题,增加了行人重识别的难度。

通过对同一张照片的彩色版和灰度版进行余弦相似度(cosine similarity)计算,发现两者相似度在0.8左右,即灰度图像损失了约20%的有效信息。

定义本文彩色-灰度视频间行人重识别的问题:Color to Gray Video Person Re-identification (CGVPR).

(2)Contribution:

① 提供了一个新的基准数据集,命名为 true-color and grayscale video person re-identification dataset (CGVID);

② 提出了解决 CGVPR 的方法,命名为 semi-coupled dictionary pair learning (SDPL).

Dataset Description

Our Approach

(1)视频重构错误项(video reconstruction error term):

彩色视频特征集合:A = [A1, A2, ..., AN]

灰度视频特征集合:B = [B1, B2, ..., BN]

其中 Ai = [ai1, ai2, ..., aini] 表示第 i 个视频的特征集合,aij 表示第 i 个视频的第 j 个步行周期的特征,每个特征维度为 d.

定义:彩色、灰度字典矩阵 DC 和 DG,A 和 B 通过字典矩阵的编码后的矩阵为 X 和 Y,视频内投影矩阵为 W 和 V.

视频重构错误项定义(目的是提高保真度):

异构视频投影项定义(目的是提高同一视频间的收敛):

其中 μi 定义为第 i 个行人视频的特征集合的中心.

(2)半耦合映射项(semi-coupled mapping term):

目的是为了使得编码后的两个矩阵更接近,通过学习映射矩阵 P 来弥补灰度图像的信息损失. 该项定义为:

(3)距离区分度项(discriminative fidelity term):

目的是为了缩小相同行人视频间距离,增大不同行人视频间距离. 该项定义为:

(4)目标函数:

其中 α 和 λ 是平衡因子,ρ1 和 ρ2 分别控制了视频间投影矩阵和视频内映射的效果,一般设置为 1 / N.

Ereg为正则化项目,等于:.

模型的思路:

The Optimization of SDPL

(1)更新 W 和 V:

通过求导得到解:

推导过程:中间跳过了计算步骤,详见论文笔记3【传送门】. V 的计算类似,略.

(2)更新 X 和 Y:

通过求导得到解:

推导过程:得到的解有细微差别(Y 的求解同理,略). 这里 |S| = 1.

(3)更新 DC 和 DG

使用ADMM算法进行求解.

(4)更新 P:

通过求导得出解:

推导过程:得到的解有细微差别.

(5)优化算法:

(6)视频匹配:

① 对灰度视频特征 F 进行编码(设置 Y = 0):

② 对彩色视频特征 C 进行编码(设置 X = 0):

③ 计算两者距离,并挑选出距离最近的匹配视频.

④ 算法流程:

Experiments

(1)实验设置:

① 特征提取:STFV3D、深度学习特征PCB.

② 参数设置:α = 0.04,β = 0.06,λ = 0.2, ρ1 = ρ2 = 1 / N. 5-fold cross validation.

③ 对比方法:

字典学习方法:STFV3D,TDL,KISSME,XQDA,SI2DL,JDML;

深度学习方法:RNNCNN,ASTPN,DeepZero,PCB.

(2)实验结果:

论文阅读笔记(九)【TIFS2020】:True-Color and Grayscale Video Person Re-Identification的更多相关文章

  1. 论文阅读笔记(七)【TIP2018】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics

    是由一篇 IJCAI2016 扩的期刊. 该篇会议论文的阅读笔记[传送门] 期刊扩充的部分:P-SI2DL 1.问题描述: 在会议论文中介绍的SI2DL方法采用了视频三元组作为视频关系(是否匹配)的逻 ...

  2. 论文阅读笔记九:SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NETS AND FULLY CONNECTED CRFS (DeepLabv1)(CVPR2014)

    论文链接:https://arxiv.org/abs/1412.7062 摘要 该文将DCNN与概率模型结合进行语义分割,并指出DCNN的最后一层feature map不足以进行准确的语义分割,DCN ...

  3. 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics

    摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...

  4. 论文阅读笔记(四)【TIP2017】:Video-Based Pedestrian Re-Identification by Adaptive Spatio-Temporal Appearance Model

    Introduction (1)背景知识: ① 人脸识别是具有高可靠性的生物识别技术,但在低解析度(resolution)和姿态变化下效果很差. ② 步态(gait)是全身行为的生物识别特征,大部分步 ...

  5. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  6. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  7. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  8. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  9. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  10. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

随机推荐

  1. Elasticsearch原理学习--为什么Elasticsearch/Lucene检索可以比MySQL快?

    转载于:http://vlambda.com/wz_wvS2uI5VRn.html 同样都可以对数据构建索引并通过索引查询数据,为什么Lucene或基于Lucene的Elasticsearch会比关系 ...

  2. 数据算法 --hadoop/spark数据处理技巧 --(7.共同好友 8. 使用MR实现推荐引擎)

    七,共同好友. 在所有用户对中找出“共同好友”. eg: a    b,c,d,g b    a,c,d,e map()->  <a,b>,<b,c,d,g> ;< ...

  3. php页面传递参数值几种方法总结

    2013-06-06 18:02 (分类:) 又搞了一个学期的php,就这样吧. php是一种服务器的脚本语言,他也是现在最为流行的WEB开发语言,下面我们来讲述一下几种上在php开发应用中常用的四种 ...

  4. [MacOS-Memcached]安装

    查看memcached信息 $ brew info memcached memcached: stable 1.5.22 (bottled), HEAD High performance, distr ...

  5. computed setter

      computed setter computed 属性默认只有 getter ,不过在需要时你也可以提供一个 setter : 实例 4 var vm = new Vue({ el: '#app' ...

  6. nCompass-网络流量基础知识

    nCompass-网络流量基础知识 1.  流量分析基础知识 1.1  常见的流量分析方式: SNMP: 网管平台通过主动式获取设备接口流量信息. Flow:网络设备将穿越的数据流信息精简压缩打包. ...

  7. Java synchronized 关键字详解

    Java synchronized 关键字详解 前置技能点 进程和线程的概念 线程创建方式 线程的状态状态转换 线程安全的概念 synchronized 关键字的几种用法 修饰非静态成员方法 sync ...

  8. pikachu-反序列化漏洞

    1.序列化的概念(摘自pikachu平台的介绍) (1)序列化serialize() 序列化说通俗点就是把一个对象变成可以传输的字符串,比如下面是一个对象:   class S{ public $te ...

  9. dubbo初识

    1.什么是dubbo? dubbo 是一个分布式服务框架 是一个高性能的RPC框架 它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现. 谈到了分布式服务框架 那 ...

  10. P3078 [USACO13MAR]Poker Hands S

    链接:Miku ---------------- 这道题和线段树有什么关系 --------------- 很简单的贪心,如果一堆牌比左边的大,那么肯定是要加上他的差的 反正,顺手出掉就可以了 --- ...