链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586

题意:n个村庄构成一棵无根树,q次询问,求任意两个村庄之间的最短距离

思路:求出两个村庄的LCA,dis[ i ] 表示结点 i 到树根的距离,那么任意两点u,v的最短距离就是dis[ u ]  - dis [LCA] + dis [ v ] - dis[ LCA ]。代码是用tarjan做的,算是模板,记录一下。

AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn = ;
struct node{//询问的结点x,y
int x,y;
int lca;
}query[maxn];
struct e{//建边
int to;
int val;
};
int dis[maxn];
vector<e> G[maxn];
vector<int> Q[maxn];
bool vis[maxn];
int N;
int fa[maxn];
void init(){//初始化父亲结点
for(int i = ;i<maxn;i++) fa[i] = i;
}
int find(int x){//并查集find函数
if(x == fa[x]) return x;
return fa[x] = find(fa[x]);
}
void tarjan(int cur){
vis[cur] = true;//标记cur已访问过
for(auto q:Q[cur]){//遍历包含cur结点的询问
if(query[q].x == cur){
if(vis[query[q].y]) {//若x == cur且y已经被访问过,搜y的祖先,就是其LCA
query[q].lca = find(query[q].y);
}
}
else{
if(vis[query[q].x]){//若y == cur且x已经被访问过,搜x的祖先,就是其LCA
query[q].lca = find(query[q].x);
}
}
}
for(auto e:G[cur]){//遍历cur结点的儿子结点
int v = e.to , len = e.val ;
if(vis[v]) continue;
dis[v] = dis[cur] + len;//dis记录cur到root的距离
tarjan(v);
fa[v] = cur; //设置cur结点子节点的父亲为cur
}
}
int main(){
int t;scanf("%d",&t);
while(t--){
scanf("%d",&N);
int q;
memset(vis,,sizeof(vis));
init();
for(int i = ;i<maxn;i++) {//初始化
Q[i].clear() ,G[i].clear() ;
query[i].lca = ,query[i].x = ,query[i].y = ;
}
scanf("%d",&q);
for(int i = ;i<=N-;i++){
int u,v,k;
scanf("%d%d%d",&u,&v,&k);
G[u].push_back({v,k}); //建图
G[v].push_back({u,k});
}
for(int i = ;i<=q;i++){
scanf("%d%d",&query[i].x ,&query[i].y );
Q[query[i].x ].push_back(i);
Q[query[i].y ].push_back(i); //离线存储所有询问 ,i为标号
}
tarjan();
for(int i = ;i<=q;i++){
int LCA = query[i].lca ;
int ans = dis[query[i].x ] + dis[query[i].y ] - *dis[LCA];//输出所有的询问
printf("%d\n",ans);
}
}
return ;
}

HDU 2586 ( LCA/tarjan算法模板)的更多相关文章

  1. hdu 2586 lca在线算法(朴素算法)

    #include<stdio.h> #include<string.h>//用c/c++会爆栈,用g++ac #define inf 0x3fffffff #define N ...

  2. hdu 2586(Tarjan 离线算法)

    How far away ?                                                                             Time Limi ...

  3. 最近公共祖先LCA(Tarjan算法)的思考和算法实现

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  4. 最近公共祖先LCA(Tarjan算法)的思考和算法实现——转载自Vendetta Blogs

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  5. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  6. Tarjan 算法求 LCA / Tarjan 算法求强连通分量

    [时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...

  7. Tarjan 算法&模板

    Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...

  8. HDU 2586 LCA

    题目大意: 多点形成一棵树,树上边有权值,给出一堆询问,求出每个询问中两个点的距离 这里求两个点的距离可以直接理解为求出两个点到根节点的权值之和,再减去2倍的最近公共祖先到根节点的距离 这是自己第一道 ...

  9. POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)

    题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...

随机推荐

  1. Python2与Python3比较

    1.print 函数 1. print语句没有了,取而代之的是print()函数. Python 2.6与Python 2.7部分地支持这种形式的print语法. 2.Unicode 1.  在pyt ...

  2. Windows配置JDK环境

    在系统变量里新建JAVA_HOME变量,变量值为:D:\Program Files\Java\jdk1.8.0_161(根据自己的安装路径填写) 在系统变量里新建classpath变量,变量值为:;% ...

  3. Spark学习之路 (二十)SparkSQL的元数据[转]

    概述 SparkSQL 的元数据的状态有两种: 1.in_memory,用完了元数据也就丢了 2.hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿. 换句 ...

  4. 0011 基于DRF框架开发(04 普通序列化器)

    普通序列化器和模型无关,只是对针对提交字段的定义. 本文定义三个序列化器: 教师序列化器,学生序列化器,教师学生序列化器.这三个序列化器都使用普通序列化器. 1 教师序列化器 在Application ...

  5. 关于Hosts与network的异同之处

    1.hosts文件,路径:/etc/hosts,此文间是在网络上使用的,用于解析计算机名称和IP地址的映射关系,功能相当于windows下面的c:\windows\system32\drivers\e ...

  6. php函数的巧妙应用

    直接切入正题: 1.extract();函数从数组中把变量导入到当前的符号表中 对于数组中的每个元素,键名用于变量名,键值用于变量值. 第二个参数 type 用于指定当某个变量已经存在,而数组中又有同 ...

  7. DVA知识集合

    react与dva 原文地址:https://github.com/dvajs/dva-knowledgemap 1.变量声明 const DELAY = 1000 let count = 0 cou ...

  8. Winfom递归绑定树节点

    /// <summary> /// 绑定树节点 /// </summary> /// <param name="pid"></param& ...

  9. 常用命令 在linux下

    1.拷贝某个目录及其下的所有的文件到另外一个目录 语法:cp -r <source directory name>/ <destination directory name>/ ...

  10. pymysql 连接池

    pymysql连接池 import pymysql from DBUtils.PooledDB import PooledDB, SharedDBConnection ''' 连接池 ''' clas ...