转载:Cubic interpolation
https://www.paulinternet.nl/?page=bicubic
Cubic interpolation
If the values of a function f(x) and its derivative are known at x=0 and x=1, then the function can be interpolated on the interval [0,1] using a third degree polynomial. This is called cubic interpolation. The formula of this polynomial can be easily derived.
A third degree polynomial and its derivative:


The values of the polynomial and its derivative at x=0 and x=1:




The four equations above can be rewritten to this:




And there we have our cubic interpolation formula.
Interpolation is often used to interpolate between a list of values. In that case we don't know the derivative of the function. We could simply use derivative 0 at every point, but we obtain smoother curves when we use the slope of a line between the previous and the next point as the derivative at a point. In that case the resulting polynomial is called a Catmull-Rom spline. Suppose you have the values p0, p1, p2and p3 at respectively x=-1, x=0, x=1, and x=2. Then we can assign the values of f(0), f(1), f'(0) and f'(1) using the formulas below to interpolate between p1 and p2.




Combining the last four formulas and the preceding four, we get:




So our cubic interpolation formula becomes:

For example:

For the green curve:





The first and the last interval
We used the two points left of the interval and the two points right of the inverval as inputs for the interpolation function. But what if we want to interpolate between the first two or last two elements of a list? Then we have no p0 or no p3. The solution is to imagine an extra point at each end of the list. In other words, we have to make up a value for p0 and p3 when interpolating the leftmost and rightmost interval respectively. Two ways to do this are:
- Repeat the first and the last point.
Left: p0 = p1
Right: p3 = p2 - Let the end point be in the middle of a line between the imaginary point and the point next to the end point.
Left: p0 = 2p1 - p2
Right: p3 = 2p2 - p1
转载:Cubic interpolation的更多相关文章
- 【转载】interpolation(插值)和 extrapolation(外推)的区别
根据已有数据以及模型(函数)预测未知区域的函数值,预测的点在已有数据范围内就是interpolation(插值), 范围外就是extrapolation(外推). The Difference Bet ...
- Interpolation in MATLAB
Mathematics One-Dimensional Interpolation There are two kinds of one-dimensional interpolation i ...
- MATLAB曲面插值及交叉验证
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离 ...
- OpenCV基于傅里叶变换进行文本的旋转校正
傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去. 先来对原始图像进行一下傅里 ...
- 通过python将图片生成字符画
基础知识: 1.python基础知识 快速学习链接:https://www.shiyanlou.com/courses/214 2.linux命令行操作 快速学习链接:https://www. ...
- Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...
- Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...
- Line Search and Quasi-Newton Methods
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...
- 非刚性图像配准 matlab简单示例 demons算法
2011-05-25 17:21 非刚性图像配准 matlab简单示例 demons算法, % Clean clc; clear all; close all; % Compile the mex f ...
随机推荐
- 使用expect实现自动交互,shell命令行自动输入
背景 有需求,在允许命令或者脚本跳出交互行,需要进行内容输入,但需要人手动输入,不是很方便,此时可以通过expect来实现自动互动交互. expect是一个自动交互功能的工具,可以满足代替我们实际工作 ...
- oracle分组后取最新的记录
使用Group By来实现取最新记录,需要注意一个问题,如果最大时间相同的数据都会被取出来. PS:即使数据字段类型是timestamp,也会登录相同的时间的数据. select A.* from A ...
- too many open files异常及解决办法
1.问题描述: 最近项目中由于大批量的操作文件,项目部署在Linux服务器上,突然发现出现了 too many open files异常. 经过一番查阅,(直译过来就是文件打开数过多)但是查阅了相关的 ...
- [PKUWC2018]Minimax [dp,线段树合并]
好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子 ...
- 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...
- C、C++和C#区别概述
译者前言 今天突然好奇C.C++和C#这三门语言都有个C,那么它们之间到底有什么关联呢.所以就去Google了,找到了这篇文章:Understanding the Differences Betwee ...
- php外挂python脚本抓取ajax数据
之前我写过一遍php外挂python脚本处理视频的文章.今天和大家分享下php外挂python实现输入关键字搜索的脚本 首先我们先来分析一波网站: http://www.dzdpw.com/s.php ...
- 问题 C: To Fill or Not to Fill
#include <cstdio> #include <vector> #include <algorithm> #include <cmath> us ...
- Python Django文件上传
文件保存本地 view视图 def update(request): if request.method =='GET': return render(request,'update.html') e ...
- 论文阅读笔记(十二)【CVPR2018】:Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成 ...