转载:Cubic interpolation
https://www.paulinternet.nl/?page=bicubic
Cubic interpolation
If the values of a function f(x) and its derivative are known at x=0 and x=1, then the function can be interpolated on the interval [0,1] using a third degree polynomial. This is called cubic interpolation. The formula of this polynomial can be easily derived.
A third degree polynomial and its derivative:
The values of the polynomial and its derivative at x=0 and x=1:
The four equations above can be rewritten to this:
And there we have our cubic interpolation formula.
Interpolation is often used to interpolate between a list of values. In that case we don't know the derivative of the function. We could simply use derivative 0 at every point, but we obtain smoother curves when we use the slope of a line between the previous and the next point as the derivative at a point. In that case the resulting polynomial is called a Catmull-Rom spline. Suppose you have the values p0, p1, p2and p3 at respectively x=-1, x=0, x=1, and x=2. Then we can assign the values of f(0), f(1), f'(0) and f'(1) using the formulas below to interpolate between p1 and p2.
Combining the last four formulas and the preceding four, we get:
So our cubic interpolation formula becomes:
For example:
For the green curve:
The first and the last interval
We used the two points left of the interval and the two points right of the inverval as inputs for the interpolation function. But what if we want to interpolate between the first two or last two elements of a list? Then we have no p0 or no p3. The solution is to imagine an extra point at each end of the list. In other words, we have to make up a value for p0 and p3 when interpolating the leftmost and rightmost interval respectively. Two ways to do this are:
- Repeat the first and the last point.
Left: p0 = p1
Right: p3 = p2 - Let the end point be in the middle of a line between the imaginary point and the point next to the end point.
Left: p0 = 2p1 - p2
Right: p3 = 2p2 - p1
转载:Cubic interpolation的更多相关文章
- 【转载】interpolation(插值)和 extrapolation(外推)的区别
根据已有数据以及模型(函数)预测未知区域的函数值,预测的点在已有数据范围内就是interpolation(插值), 范围外就是extrapolation(外推). The Difference Bet ...
- Interpolation in MATLAB
Mathematics One-Dimensional Interpolation There are two kinds of one-dimensional interpolation i ...
- MATLAB曲面插值及交叉验证
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离 ...
- OpenCV基于傅里叶变换进行文本的旋转校正
傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去. 先来对原始图像进行一下傅里 ...
- 通过python将图片生成字符画
基础知识: 1.python基础知识 快速学习链接:https://www.shiyanlou.com/courses/214 2.linux命令行操作 快速学习链接:https://www. ...
- Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...
- Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...
- Line Search and Quasi-Newton Methods
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...
- 非刚性图像配准 matlab简单示例 demons算法
2011-05-25 17:21 非刚性图像配准 matlab简单示例 demons算法, % Clean clc; clear all; close all; % Compile the mex f ...
随机推荐
- JSOI部分题解
JSOI部分题解 JSOI2018 战争 问题转化为给定你两个凸包\(\mathbb S,\mathbb T\),每次独立的询问将\(\mathbb T\)中的每个点移动一个向量,问\(\mathbb ...
- 8maven配置多个项目之间的依赖
首先创建两个项目进行测试依赖 创建一个HelloWorld2项目,一个HelloWorld类里面有一个sayHello的方法 然后再创建一个HelloWorldTime项目,一个SayHelloWor ...
- CSS小记录
1.图片铺满 background: rgba(12, 100, 129, 1) url('https://images.cnblogs.com/cnblogs_com/yukarin/1639008 ...
- Cassandra学习&命令行实践
准备 按照Cassandra集群部署搭建两台测试机,环境信息如下: 名称 IP 数据中心名称 node-01 192.168.198.130 datacenter1 node-02 192.168.1 ...
- 对于tensorflow中的gradient_override_map函数的理解
# #############添加############## def binarize(self, x): """ Clip and binarize tensor u ...
- ovs安装教程
原文链接:https://www.cnblogs.com/goldsunshine/p/10331606.html Open vSwitch系列之二 安装指定版本ovs Open vSwitch系 ...
- Nginx出现403 forbidden
我装在linux上的nginx版本是1.16 当我在nginx/conf/nginx.conf文件里配置完代理 location /ds { root /home/nginx; index index ...
- 在mac下初次使用pygame踩坑纪实(卡死)
初次使用pygame实现绘图功能就踩坑 直接上代码 import pygame pygame.init() # 创建游戏的窗口 480 * 700screen = pygame.display.set ...
- CSS隐藏元素的五种方法
1.opacity:0 2.visibility:hidden 3.diaplay:none 4.position:absolute display display属性依照词义真正隐藏元素.将disp ...
- 【剑指Offer】39:平衡二叉树
题目描述: 输入一棵二叉树,判断该二叉树是否是平衡二叉树 题解:递归 /*最直接的做法,遍历每个结点,借助一个获取树深度的递归函数,根据该结点的左右子树高度差判断是否平衡,然后递归地对左右子树进行判断 ...