转载:Cubic interpolation
https://www.paulinternet.nl/?page=bicubic
Cubic interpolation
If the values of a function f(x) and its derivative are known at x=0 and x=1, then the function can be interpolated on the interval [0,1] using a third degree polynomial. This is called cubic interpolation. The formula of this polynomial can be easily derived.
A third degree polynomial and its derivative:


The values of the polynomial and its derivative at x=0 and x=1:




The four equations above can be rewritten to this:




And there we have our cubic interpolation formula.
Interpolation is often used to interpolate between a list of values. In that case we don't know the derivative of the function. We could simply use derivative 0 at every point, but we obtain smoother curves when we use the slope of a line between the previous and the next point as the derivative at a point. In that case the resulting polynomial is called a Catmull-Rom spline. Suppose you have the values p0, p1, p2and p3 at respectively x=-1, x=0, x=1, and x=2. Then we can assign the values of f(0), f(1), f'(0) and f'(1) using the formulas below to interpolate between p1 and p2.




Combining the last four formulas and the preceding four, we get:




So our cubic interpolation formula becomes:

For example:

For the green curve:





The first and the last interval
We used the two points left of the interval and the two points right of the inverval as inputs for the interpolation function. But what if we want to interpolate between the first two or last two elements of a list? Then we have no p0 or no p3. The solution is to imagine an extra point at each end of the list. In other words, we have to make up a value for p0 and p3 when interpolating the leftmost and rightmost interval respectively. Two ways to do this are:
- Repeat the first and the last point.
Left: p0 = p1
Right: p3 = p2 - Let the end point be in the middle of a line between the imaginary point and the point next to the end point.
Left: p0 = 2p1 - p2
Right: p3 = 2p2 - p1
转载:Cubic interpolation的更多相关文章
- 【转载】interpolation(插值)和 extrapolation(外推)的区别
根据已有数据以及模型(函数)预测未知区域的函数值,预测的点在已有数据范围内就是interpolation(插值), 范围外就是extrapolation(外推). The Difference Bet ...
- Interpolation in MATLAB
Mathematics One-Dimensional Interpolation There are two kinds of one-dimensional interpolation i ...
- MATLAB曲面插值及交叉验证
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离 ...
- OpenCV基于傅里叶变换进行文本的旋转校正
傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去. 先来对原始图像进行一下傅里 ...
- 通过python将图片生成字符画
基础知识: 1.python基础知识 快速学习链接:https://www.shiyanlou.com/courses/214 2.linux命令行操作 快速学习链接:https://www. ...
- Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...
- Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...
- Line Search and Quasi-Newton Methods
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...
- 非刚性图像配准 matlab简单示例 demons算法
2011-05-25 17:21 非刚性图像配准 matlab简单示例 demons算法, % Clean clc; clear all; close all; % Compile the mex f ...
随机推荐
- C#常见基础算法
namespace 面试常见算法 { class Program { static void Main(string[] args) { ); Console.WriteLine(n1); Test2 ...
- Mac brew update 慢~~~
正题开始之前, 如果对 Homebrew 不太了解, 这里有一篇很好的介绍文章: macOS 包管理工具 Homebrew 不完全指南 花个几分钟读一下, 绝对超值! 正题 Homebrew 通过 G ...
- C语言 杂货整理
C语言 杂货整理 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <string.h> #include ...
- ES的性能优化
ES的性能优化 es在数据量很大的情况下(数十亿级别)如何提高查询效率? 在es里,不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景.也许有的场景是你换个参数,或者调整一下语法,就可以搞定 ...
- 在Windows7中的各种显示模式中桌面图标的尺寸
在Windows7中的各种显示模式中,图标的尺寸 window7 桌面icon设计尺寸大小桌面图标设计尺寸一般是多少超大图标:256X256大图标:128X128中图标:32X32平铺:32X32列表 ...
- Codeforces Round #622(Div 2) C1. Skyscrapers (easy version)
题目链接: C1. Skyscrapers (easy version) 题目描述: 有一行数,使得整个序列满足 先递增在递减(或者只递增,或者只递减) ,每个位置上的数可以改变,但是最大不能超过原来 ...
- Python 测试代码 初学者笔记
单元测试 每完成一个单元测试,Python都会打印一个字符: 测试通过打印一个句点:测试引发错误打印E:测试导致断言失败打印F 模块unittest import unittest from name ...
- javascript当中arguments用法
8)arguments 例 3.8.1<head> <meta http-equiv="content-type" content="text/h ...
- the simmon effect(in psychology) :build the function of subject_information(modify the experiment programme),before we begin the experiment
#the real experiment for simon effect #load the library which is our need import pygame import sys i ...
- 【巨杉数据库SequoiaDB】巨杉数据库无人值守智能自动化测试实践
刚刚过去的春节,新型冠状病毒疫情突如其来地横扫大江南北.为了响应国家号召,许多软件公司和互联网公司也将在较长一段时间内建议员工采取远程办公的方式,同时也存在骨干工程师无法及时返岗的问题,使得生产力大受 ...