题面

简化版题意:给出 \(n\) 个点 \(m\) 条边的无向图,可以交换任意两条边的权值 \(k\) 次,求 \(1\) 结点到 \(n\) 结点的最短路。

考虑\(\text{DP}\)。

把所有的边从小到大排序,那么贪心的做的话,肯定有一个分界线 \(L\) ,使得 \(L\) 前面的边全部被使用,后面的边都不会被选用,我们枚举这个分界线 \(L\)。

设 \(dp_{i,j,k}\) 表示当前是 \(i\) 结点,使用了前 \(L\) 条边的 \(j\) 条,用了 \(k\) 次魔法。

可以在\(\text{Dijkstra}\)跑最短路时转移状态。

于是 \(\text{DP}\) 时出现了两种情况。

对于当前权值为 \(w\) 的边 \((u, v)\):

  • 这条边是前 \(L\) 条边中的一条:

    • \(dp_{v,j + 1,k} = \min(dp_{v,j + 1,k}, dp_{u,j,k} + w)\)。
    • 因为这条边和第 \(j + 1\) 条边一定会被选用,为了方便枚举,我们从小到大选用。
  • 这条边不是前 \(L\) 条边中的一条:

    • \(dp_{v,j,k} = \min(dp_{v,j,k}, dp_{u,j,k} + w)\) 直接使用这条边;
    • \(dp_{v,j + 1,k + 1} = \min(dp_{v,j + 1,k + 1}, dp_{u,j,k} + w_{j + 1})\)将这条边与第 \(j + 1\) 条边交换 。

代码写起来比较复杂。

#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} const int maxn = 166; int n, m, k, tot, head[maxn], ver[maxn * 2], nxt[maxn * 2], edge[maxn * 2];
int dp[55][maxn][55], in[55][maxn][55], ans = 1000000007; inline void add(int u, int v, int w)
{
ver[++tot] = v, edge[tot] = w, nxt[tot] = head[u], head[u] = tot;
} struct Node
{
int u, v, w;
} e[maxn]; struct QwQ
{
int u, j, k;
} ;
vector <int> vv[maxn]; inline bool cmp(Node x, Node y) {return x.w < y.w;} inline void solve(int l)
{
queue <QwQ> q;
memset(dp, 0x3f, sizeof(dp));
memset(in, 0, sizeof(in));
in[1][0][0] = 1;
dp[1][0][0] = 0;
q.push((QwQ){1, 0, 0});
while (!q.empty())
{
int u = q.front().u, j = q.front().j, kk = q.front().k;
q.pop(); in[u][j][kk] = 0;
for (int i = vv[u].size() - 1; i >= 0; i-=1)
{
int now = vv[u][i], v;
if (u == e[now].u) v = e[now].v;
else v = e[now].u;
if (now <= l)
{
if (j < l && dp[v][j + 1][kk] > dp[u][j][kk] + e[j + 1].w)
{
dp[v][j + 1][kk] = dp[u][j][kk] + e[j + 1].w;
if (!in[v][j + 1][kk])
{
in[v][j + 1][kk] = 1;
q.push((QwQ){v, j + 1, kk});
}
}
}
else
{
if (j < l && kk < k && dp[v][j + 1][kk + 1] > dp[u][j][kk] + e[j + 1].w)
{
dp[v][j + 1][kk + 1] = dp[u][j][kk] + e[j + 1].w;
if (!in[v][j + 1][kk + 1])
{
in[v][j + 1][kk + 1] = 1;
q.push((QwQ){v, j + 1, kk + 1});
}
}
if (dp[v][j][kk] > dp[u][j][kk] + e[now].w)
{
dp[v][j][kk] = dp[u][j][kk] + e[now].w;
if (!in[v][j][kk])
{
in[v][j][kk] = 1;
q.push((QwQ){v, j, kk});
}
}
}
}
}
for (int i = 0; i <= k; i+=1) ans = min(ans, dp[n][l][i]);
} int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), m = gi(), k = gi();
for (int i = 1; i <= m; i+=1)
{
e[i].u = gi(), e[i].v = gi(), e[i].w = gi();
}
sort(e + 1, e + 1 + m, cmp);
for (int i = 1; i <= m; i+=1)
vv[e[i].u].push_back(i), vv[e[i].v].push_back(i);
for (int i = 0; i <= m; i+=1) solve(i);
printf("%d\n", ans);
return 0;
}

题解【洛谷P6029】[JSOI2010]旅行的更多相关文章

  1. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. Java实现 洛谷 Car的旅行路线

    输入输出样例 输入样例#1: 1 3 10 1 3 1 1 1 3 3 1 30 2 5 7 4 5 2 1 8 6 8 8 11 6 3 输出样例#1: 47.5 import java.util. ...

  4. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  5. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  6. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  7. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  8. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  9. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  10. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

随机推荐

  1. matlab仿真随机数的产生

    概率论和数理统计实验(matlab中实现) 一.伯努利分布 R=binornd(N,P); //N,P为二次分布的俩个参数,返回服从参数为N,P的二项分布的随机数,且N,P,R的形式相同. R=bin ...

  2. 使用centos6.5整理出来的常用命令

    1.Vi 基本操作1) 进入vi 在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面: $ vi myfile 进入vi之后,是处于「命令行模式(command mode)」,您要切换到「插 ...

  3. bootstrap 兼容 IE8

    在 html 中引用 <!-- bootstrap 兼容 IE8 --> <script src="../../jsapi/js/html5shiv.min.js" ...

  4. Centos 7 firewall的防火墙的规则

    这是官方文档: http://www.firewalld.org/documentation/man-pages/firewall-cmd.html 想使用iptables的规则,firewall也可 ...

  5. nvm,nrm和yarn

    nvm Node Version Management nvm list 查看所有已安装的 node 版本 nvm install 版本号 安装指定版本的 node nvm use 版本号 切换到指定 ...

  6. tensor维度变换

    维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓Vi ...

  7. 剑指offer-基础练习-增删节点-链表

    /* 链表基本操作: 插入节点和删除节点 */ /* 思路: 使用指向链表的头指针,这样在新插入节点后,头指针不会改变 */ struct ListNode{ int value; ListNode* ...

  8. css代码实现switch开关滑动

    效果预览: 代码如下: <style> #toggle-button{ display: none; } .button-label{ position: relative; displa ...

  9. tmp = 2/4;竟然没有发现的

    我还纠结着单目运算符和双目运算符和乘除的一些优先级什么事情. #include "common.h" #include <stdio.h> #include <s ...

  10. phpcms v9 标签调用,函数,sql

    1.截取调用标题长度 {str_cut($r[title],36,'')} 2.格式化时间 调用格式化时间 2011-05-06 11:22:33 {date('Y-m-d H:i:s',$r[inp ...