隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型。HMM模型主要用于语音识别,自然语言处理,生物信息,模式识别等领域。

引入

  某天,你的女神告诉你说,她放假三天,将要去上海游玩,准备去欢乐谷、迪士尼和外滩(不一定三个都会去)。
  她呢,会选择在这三个地方中的某几个逗留并决定是否购物,而且每天只待在一个地方。根据你对她的了解,知道她去哪个地方,仅取决于她去的上一个地方,且是否购物的概率仅取决于她去的地方。已知她去的三个地方的转移概率表如下:

  欢乐谷 迪士尼 外滩
欢乐谷 0.8 0.05 0.15
迪士尼 0.2 0.6 0.3
外滩 0.2 0.3 0.5

稍微对这个表格做些说明,比如第一行,前一天去了欢乐谷后,第二天还待在欢乐谷的概率为0.8,去迪士尼的概率为0.05,去外滩的概率为0.15。
她在每个地方的购物概率为:

地点 购物概率
欢乐谷 0.1
迪士尼 0.8
外滩 0.3

  在出发的时候,她跟你说去每个地方的可能性相同。后来,放假回来后,你看了她的朋友圈,发现她的购物情况如下:第一天不购物,第二三天都购物了。于是,你很好奇,她这三天都去了哪些地方。
  怎么样,聪明的你能求解出来吗?

HMM的模型参数

  接下来,我们将会介绍隐马尔可夫模型(HMM)。
  隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐藏的马尔可夫链随机生成的状态的序列,称为状态序列;每个状态生成一个观测,而由此产生的观测的随机序列,称为观测序列。序列的每一个位置又可以看作是一个时刻。
  隐马尔可夫模型由初始概率分布、状态转移概率分布以及观测概率分布确定。隐马尔可夫模型的形式定义如下:
  设Q是所有可能的状态的集合,V是所有可能的观测的集合,也就是说,Q是不可见的,而V是可见的,是我们观测到的可能结果。

其中,N是可能的状态数,M是可能的观测数。
  在刚才的例子中,Q是不可见的状态集合,应为Q={欢乐谷,迪士尼,外滩},而V是可以观测的集合,应为V={购物,不购物}。
  I是长度为T的状态序列,O是对应的观测序列。

在刚才的例子中,I这个序列是我们需要求解的,即女生去了哪些地方,而O是你知道的序列,O={不购物,购物,购物}。
  A是状态转移概率矩阵:

N是在时刻t处于状态qi的条件下在时刻t+1转移到状态qj的概率。在刚才的例子中,转移概率矩阵为:

  B是观测概率矩阵:

N是在时刻t处于状态qj的条件下生成观测vk的概率。在刚才的例子中:

综上,我们已经讲完HMM中的基本概念。同时,我们可以知道,隐马尔可夫模型由初始状态概率向量π,状态转移概率矩阵A和观测概率矩阵B决定。π和A决定状态序列,B决定观测序列。因此,隐马尔可夫模型λλ可用三元符号表示,即

A,B,π称为HMM的三要素。
  当然,隐马尔可夫模型之所以被称为马尔可夫模型,是因为它使用了两个基本的假设,其中之一为马尔可夫假设。它们分别是:

  1. 齐次马尔科夫假设,即假设隐藏的马尔可夫链在任意时刻t的状态只依赖于其前一时刻的状态,与其他时刻的状态及观测无关,也与时刻t无关。

    

  1. 观测独立性假设,即假设任意时刻的观测只依赖于该时刻的马尔可夫链的状态,与其他观测及状态无关。

    

  在刚才的假设中,我们对应的两个假设分别为:她去哪个地方,仅取决于她去的上一个地方;是否购物的概率仅取决于她去的地方。前一个条件为齐次马尔科夫假设,后一个条件为观测独立性假设。
  以上,我们就介绍了HMM的基本概念及假设。而HMM的三个基本问题如下:

  

上面的例子即为HMM的第三个基本问题,也就是,给定观测序列{不购物,购物,购物},结果最有可能的状态序列,即游玩的地方。

Viterbi算法

  求解HMM的第三个基本问题,会用到大名鼎鼎的维特比算法(Viterbi Algorithm)。
  维特比算法是一个特殊但应用最广的动态规划(dynamic programming)算法,利用动态规划,可以解决任何一个图中的最短路径问题,同时,它也是求解HMM描述的第三个基本问题的算法。

Python代码实现

  下面,对于刚才给出的例子,我们将使用Python,来写代码实现Viterbi算法,同时求解刚才的问题。

# -*- coding: utf-8 -*-
# HMM.py
# Using Vertibi algorithm
import numpy as np
def Viterbi(A, B, PI, V, Q, obs):
    N = len(Q)
    T = len(obs)
    delta = np.array([[0] * N] * T, dtype=np.float64)
    phi = np.array([[0] * N] * T, dtype=np.int64)
    # 初始化
    for i in range(N):
        delta[0, i] = PI[i]*B[i][V.index(obs[0])]
        phi[0, i] = 0
    # 递归计算
    for i in range(1, T):
        for j in range(N):
            tmp = [delta[i-1, k]*A[k][j] for k in range(N)]
            delta[i,j] = max(tmp) * B[j][V.index(obs[i])]
            phi[i,j] = tmp.index(max(tmp))
    # 最终的概率及节点
    P = max(delta[T-1, :])
    I = int(np.argmax(delta[T-1, :]))
    # 最优路径path
    path = [I]
    for i in reversed(range(1, T)):
        end = path[-1]
        path.append(phi[i, end])
    hidden_states = [Q[i] for i in reversed(path)]
    return P, hidden_states def main():
    # 状态集合
    Q = ('欢乐谷', '迪士尼', '外滩')
    # 观测集合
    V = ['购物', '不购物']
    # 转移概率: Q -> Q
    A = [[0.8, 0.05, 0.15],
         [0.2, 0.6, 0.2],
         [0.2, 0.3, 0.5]
        ]
    # 发射概率, Q -> V
    B = [[0.1, 0.9],
         [0.8, 0.2],
         [0.3, 0.7]
         ]
    # 初始概率
    PI = [1/3, 1/3, 1/3]
    # 观测序列
    obs = ['不购物', '购物', '购物']
    P, hidden_states = Viterbi(A,B,PI,V,Q,obs)
    print('最大的概率为: %.5f.'%P)
    print('隐藏序列为:%s.'%hidden_states)
main()

输出结果如下:

最大的概率为: 0.02688.
隐藏序列为:['外滩', '迪士尼', '迪士尼'].

现在,你有很大的把握可以确定,你的女神去了外滩和迪士尼。

隐马尔可夫模型及Viterbi算法的更多相关文章

  1. 隐马尔科夫模型及Viterbi算法的应用

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4335810.html 一个例子: 韦小宝使用骰子进行游戏,他有两种骰子一种正常的骰子,还有一 ...

  2. HMM:隐马尔科夫模型-前向算法

    http://blog.csdn.net/pipisorry/article/details/50722376 目标-解决HMM的基本问题之一:已知HMM模型λ及观察序列O,如何计算P(O|λ)(计算 ...

  3. HMM:隐马尔科夫模型-维特比算法

    http://blog.csdn.net/pipisorry/article/details/50731584 目标-解决HMM的基本问题之二:给定观察序列O=O1,O2,-OT以及模型λ,如何选择一 ...

  4. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引 ...

  5. Viterbi算法和隐马尔可夫模型(HMM)算法

    隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那 ...

  6. 隐马尔可夫模型(HMM)及Viterbi算法

    HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型 ...

  7. 隐马尔科夫模型(HMM)的概念

    定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij) ...

  8. 隐马尔科夫模型(Hidden Markov Models)

    链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...

  9. 隐马尔科夫模型(Hidden Markov Models) 系列之三

    转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...

随机推荐

  1. HtmlHelper1

    <div> @using(Html.BeginForm("Test","Default")) { 4 @Html.TextBox("nam ...

  2. nowcoder牛客wannafly挑战赛20

    A---染色 签到题,设最终颜色为x,一次操作就需要把一个不是x的点变为x,所以最终颜色为x时需要操作 总结点个数-颜色为x的节点个数,然后枚举所有颜色就行了 #include <iostrea ...

  3. 去掉IE提示:在此页上的ActiveX控件和本页上的其他部分的交互可能不安全。你想允许这种交互吗?

    由于项目需求,需要用到OCX控件.而在IE浏览器中加载OCX控件会有如下提示: 这是因为OCX控件有一个ID,而这个ID注册后IE不认为该OCX控件是安全的.所以,必须把这个控件注册为安全控件. 假设 ...

  4. Windows API 第 10篇 SearchTreeForFile

    函数原型:BOOL SearchTreeForFile(  PSTR RootPath,      //系统查找的起始路径,   PSTR InputPathName,                 ...

  5. Python-基本文件处理

    目录 文件的类型 什么是文件? 文件的分类 文件的打开与关闭 文件处理的三个步骤 使用方式 爬虫 requests库的使用 文件的类型 什么是文件? 一堆.py/.txt 存储着文字信息文件, 文件的 ...

  6. thinkphp+ajax 实现点击加载更多数据

    https://blog.csdn.net/a898712940/article/details/78545599?utm_source=blogxgwz8 适用范围:thinkphp3.2和thin ...

  7. 【DM8168学习笔记3】CodSourcery GCC Tool Chain安装过程记录

    eagle@eagle-desktop:~$ cd/home/eagle/desktop eagle@eagle-desktop:~/desktop$ cd./vboxshared eagle@eag ...

  8. Acer笔记本蓝牙功能不可用

    在电脑运行过程中,本应该如下所存在的蓝牙图标不存在了: 打开设置,本应该可以选择开关的蓝牙开关按钮也不存在了: 电脑的蓝牙功能无法使用: 处理方法: 在C:\windows\sysytem32\文件夹 ...

  9. idea报错:Error:java不支持发行版本5的解决方法

    将以下对应配置一致即可. File-->Project Structure File-->Settings

  10. HTML入门:Tag学习

    即使 <br> 在所有浏览器中的显示都没有问题,使用 <br /> 也是更长远的保障. 标签 描述 <html> 定义 HTML 文档. <body> ...