题目链接:https://www.luogu.org/problem/P3178

这道题目是一道树链剖分的模板题。

但是在解决这道问题的同事刷新了我的两个认识:

第一个认识是:树链剖分不光可以处理链,还可以处理 子树 ,因为:

节点 u 的子树中所有的点的编号都覆盖在 seg[u]seg[u]+size[u]-1 这个区间内!

第二个认识是:线段树延迟操作的延迟标记不是标记自己,也就是说:

lazy[rt] 并不是标记本身的延迟值,而是说 rt 本身有多少个延迟值没有传递给 rt<<1rt<<1|1 的。

然后这道题目就是一道裸树链剖分题,运用到了子树更新和延迟操作。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 100010;
int fa[maxn],
dep[maxn],
size[maxn],
son[maxn],
top[maxn],
seg[maxn], seg_cnt,
rev[maxn],
n, w[maxn];
long long sumv[maxn<<2], lazy[maxn<<2];
vector<int> g[maxn];
void dfs1(int u, int p) {
size[u] = 1;
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == p) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v, u);
size[u] += size[v];
if (size[v] >size[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
seg[u] = ++seg_cnt;
rev[seg_cnt] = u;
top[u] = tp;
if (son[u]) dfs2(son[u], tp);
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1
void push_down(int rt, int len) {
if (lazy[rt]) {
int l_len=len-len/2, r_len = len/2;
lazy[rt<<1] += lazy[rt];
lazy[rt<<1|1] += lazy[rt];
sumv[rt<<1] += lazy[rt] * l_len;
sumv[rt<<1|1] += lazy[rt] * r_len;
lazy[rt] = 0;
}
}
void push_up(int rt) {
sumv[rt] = sumv[rt<<1] + sumv[rt<<1|1];
}
void build(int l, int r, int rt) {
int mid = (l + r) / 2;
if (l == r) {
sumv[rt] = w[rev[l]];
return;
}
build(lson); build(rson);
push_up(rt);
}
void update(int L, int R, long long v, int l, int r, int rt) {
if (L <= l && r <= R) {
sumv[rt] += (r-l+1) * v;
lazy[rt] += v;
return;
}
push_down(rt, r-l+1);
int mid = (l + r) / 2;
if (L <= mid) update(L, R, v, lson);
if (R > mid) update(L, R, v, rson);
push_up(rt);
}
long long query_sum(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return sumv[rt];
push_down(rt, r-l+1);
int mid = (l + r) / 2;
long long tmp = 0;
if (L <= mid) tmp += query_sum(L, R, lson);
if (R > mid) tmp += query_sum(L, R, rson);
return tmp;
}
long long ask_sum(int u, int v) {
long long res = 0;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res += query_sum(seg[top[u]], seg[u], 1, n, 1);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
res += query_sum(seg[v], seg[u], 1, n, 1);
return res;
}
int m, op, x, a;
string s;
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> w[i];
for (int i = 1; i < n; i ++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dep[1] = fa[1] = 1;
dfs1(1, -1);
dfs2(1, 1);
build(1, n, 1);
while (m --) {
cin >> op;
if (op == 1) {
cin >> x >> a;
update(seg[x], seg[x], a, 1, n, 1);
}
else if (op == 2) {
cin >> x >> a;
update(seg[x], seg[x]+size[x]-1, a, 1, n, 1);
}
else {
cin >> x;
cout << ask_sum(1, x) << endl;
}
}
return 0;
}

作者:zifeiy

洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树的更多相关文章

  1. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

  2. 洛谷P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  3. 洛谷P3178 [HAOI2015]树上操作(线段树)

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  4. 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)

    题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...

  5. 洛谷 P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  6. 洛谷——P3178 [HAOI2015]树上操作

    https://www.luogu.org/problem/show?pid=3178#sub 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 ...

  7. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  8. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  9. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

随机推荐

  1. 洛谷 2055 [ZJOI2009]假期的宿舍——二分图匹配

    题目:https://www.luogu.org/problemnew/show/P2055 #include<iostream> #include<cstdio> #incl ...

  2. jquery 设置 html标签响应式布局

    function sWidth() {//计算当前设备宽度 var widthSize; if ($(window).width() <= 640) { widthSize = $(window ...

  3. Linux下安装配置git

    参考博客: https://www.cnblogs.com/luhouxiang/p/5801853.html但执行git --version命令会出现 git version 1.8.3.1 不是最 ...

  4. php各种字符串截取

    各种字符串截取.php <?php /** * 字符串截取,支持中文和其他编码 * @param [string] $str [字符串] * @param integer $start [起始位 ...

  5. Leetcode844.Backspace String Compare比较含退格的字符串

    给定 S 和 T 两个字符串,当它们分别被输入到空白的文本编辑器后,判断二者是否相等,并返回结果. # 代表退格字符. 示例 1: 输入:S = "ab#c", T = " ...

  6. c++进制数转换

    QString result; ]; sprintf(buffer, "0x%x", modelId); return result = buffer;

  7. Sum Root to Leaf Numbers深度优先计算路径和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  8. 【软件安装】python安装numpy、scipy

    python2.7开发环境,若为python3.4的环境则下载对应的软件 系统为64为windows环境,显然不同于32的环境,更繁琐,所谓的网友教程也不尽人意. 安装numpy 下载地址:http: ...

  9. Find Minimumd in Rotated Sorted Array

    二分搜索查最小数,from mid to分别为区间的第一个,中位数,和最后一个数 if(from<=mid&&mid<=to)//顺序,第一个即为最小值 return fr ...

  10. iOS9 CASpringAnimation 弹簧动画详解

    http://blog.csdn.net/zhao18933/article/details/47110469 1. CASpringAnimation iOS9才引入的动画类,它继承于CABaseA ...