http://poj.org/problem?id=2826

题目大意:给两条线,让它接竖直下的雨,问其能装多少横截面积的雨。

————————————————————————————

水题,看题目即可知道。

但是细节是真的多……不过好在两次AC应该没算被坑的很惨(全程没查题解)。

推荐交之前看一下讨论版的数据,方便一次AC(我第一次就是作死直接交了结果我自己都想好的情况忘了写了……)

相信看到这篇题解的人都看过题了,那么先说细节:

1.C++提交(G++不知道为什么WA了……)

2.精度

3.特殊情况,看看下面哪种情况你没有考虑到(以下都是没法装水的情况):

还有一种能够接水的情况:

将上面考虑完了,应该就差不多了。

那么说一下正解:

1.ko掉所有平行情况。(图3)

2.ko掉所有不相交情况。(图6)

3.ko掉所有斜率为0的情况。(图5)

4.上述两种情况完成后,求交点。

5.发现图1和图7情况只存在于斜率同号的情况下,特判之。

6.图2和图4一并解决:从交点处画一条平行于x的线,如果在该线上方的点的个数不为2,则不能接水。

7.上述情况讨论完后一定能接水,从6中获得的两个点取y值最小的点画一条平行于x的线,则围成的面积即为所求

总结:

线关系和线交点的题,细节较多,代码实现较长较繁琐,不推荐读下面代码。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
const dl INF=;
struct point{
dl x;
dl y;
}p[];
inline point getmag(point a,point b){
point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline dl multiX(point a,point b){
return a.x*b.y-b.x*a.y;
}
inline dl multiP(point a,point b){
return a.x*b.x+b.y*a.y;
}
inline bool parallel_mag(point a,point b){
if(fabs(a.x*b.y-a.y*b.x)<eps)return ;
return ;
}
inline bool check(point a,point b,point c,point d){
if(multiX(getmag(c,d),getmag(c,a))*multiX(getmag(c,d),getmag(c,b))>eps)return ;
if(multiX(getmag(a,b),getmag(a,c))*multiX(getmag(a,b),getmag(a,d))>eps)return ;
return ;
}
inline point intersection(point a,point b,point c,point d){
point s;
dl a1=a.y-b.y,b1=b.x-a.x,c1=a.x*b.y-b.x*a.y;
dl a2=c.y-d.y,b2=d.x-c.x,c2=c.x*d.y-d.x*c.y;
s.x=(c1*b2-c2*b1)/(a2*b1-a1*b2);
s.y=(a2*c1-a1*c2)/(a1*b2-a2*b1);
return s;
}
inline dl slope(point a,point b){
if(fabs(a.x-b.x)<eps)return INF;
return (a.y-b.y)/(a.x-b.x);
}
inline bool deng(point a,point b){
if(fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps)return ;
return ;
}
inline bool pan(point s){
dl k1=slope(p[],p[]);
dl k2=slope(p[],p[]);
if(fabs(k1)<eps||fabs(k2)<eps)return ;
if(k1>eps&&k2>eps){
if(k2-k1>eps){
if(-eps<p[].x-p[].x)return ;
}else{
if(-eps<p[].x-p[].x)return ;
}
}
if(k1<-eps&&k2<-eps){
if(k1<k2){
if(p[].x-p[].x>-eps)return ;
}else{
if(p[].x-p[].x>-eps)return ;
}
return ;
}
int ok=;
for(int i=;i<=;i++){
if(p[i].y-s.y>eps){
ok++;
}
}
if(ok!=)return ;
return ;
}
dl area(){
if(parallel_mag(getmag(p[],p[]),getmag(p[],p[])))return ;
if(!check(p[],p[],p[],p[]))return ;
point s=intersection(p[],p[],p[],p[]);
if(!pan(s))return ;
int s1=,s2=;
for(int i=;i<=;i++){
if(p[i].y-s.y>eps){
if(!s1)s1=i;
else s2=i;
}
}
point ns,nss,n1,n2;
if(eps<p[s2].y-p[s1].y){
ns.x=p[s1].x;ns.y=p[s1].y;
}else{
ns.x=p[s2].x;ns.y=p[s2].y;
}
nss.x=INF;nss.y=ns.y;
n1=intersection(p[],p[],ns,nss);
n2=intersection(p[],p[],ns,nss);
return fabs(multiX(getmag(s,n1),getmag(s,n2)))/;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
for(int i=;i<=;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
if(p[].x>p[].x)swap(p[],p[]);
if(p[].x>p[].x)swap(p[],p[]);
printf("%.2f\n",area());
}
return ;
}

POJ2826:An Easy Problem?!——题解(配特殊情况图)的更多相关文章

  1. poj2826 An Easy Problem?!【计算几何】

    含[三点坐标计算面积].[判断两线段是否有交点].[求线段交点]模板   An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Tot ...

  2. Poj2826 An Easy Problem

    呵呵哒.WA了无数次,一开始想的办法最终发现都有缺陷.首先需要知道: 1)线段不相交,一定面积为0 2)有一条线段与X轴平行,面积一定为0 3)线段相交,但是能接水的三角形上面线段把下面的线段完全覆盖 ...

  3. poj2826 An Easy Problem?!(计算几何)

    传送门 •题意 两根木块组成一个槽,给定两个木块的两个端点 雨水竖直下落,问槽里能装多少雨水, •思路 找不能收集到雨水的情况 我们令线段较高的点为s点,较低的点为e点 ①两条木块没有交点 ②平行或重 ...

  4. LuoguP7852 「EZEC-9」Yet Another Easy Problem 题解

    Content 给定 \(n,m\),你需要输出一个长度为 \(n\) 的排列,满足该排列进行不超过 \(m\) 次交换操作可以得到的最小的字典序最大. 数据范围:\(T\) 组数据,\(1\leqs ...

  5. An Easy Problem?!(细节题,要把所有情况考虑到)

    http://poj.org/problem?id=2826 An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  6. POJ 2826 An Easy Problem?![线段]

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12970   Accepted: 199 ...

  7. POJ 2826 An Easy Problem?!

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7837   Accepted: 1145 ...

  8. HDU 5475 An easy problem 线段树

    An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. [POJ] 2453 An Easy Problem [位运算]

    An Easy Problem   Description As we known, data stored in the computers is in binary form. The probl ...

随机推荐

  1. SpringBoot入门(一)——开箱即用

    本文来自网易云社区 Spring Boot是什么 从根本上来讲Spring Boot就是一些库的集合,是一个基于"约定优于配置"的原则,快速搭建应用的框架.本质上依然Spring, ...

  2. 「专题训练」Air Raid(HDU-1151)

    题目 在一个城市里有\(n\)个地点和\(k\)条道路,道路是无环的(也就是说一定可以二分染色--回路长度为偶数0),现在伞兵需要去n个地点视察,只能沿着路的方向走,问最少需要多少伞兵. 分析 这是什 ...

  3. [JSON].toXMLString()

    语法:[JSON].toXMLString() 返回:[String] 说明:将[JSON]实例转换成XML格式结果. 示例: <% jsonString = "{div: 'hell ...

  4. RL_Learning

    Key Concepts in RL 标签(空格分隔): RL_learning OpenAI Spinning Up原址 states and observations (状态和观测) action ...

  5. github 使用“git commit -m"命令时候出现的一个小问题

    git commit -m 使用问题 今天提交文件到github,步骤是: git add abc.py (abc.py是我当前随意写的一个文件名) git commit -m 'add codes ...

  6. Unicode,UTF-32,UTF-16,UTF-8到底是啥关系?

    编码的目的,就是给抽象的字符赋予一个数值,好在计算机里面表示.常见的ASCII使用8bit给字符编码,但是实际只使用了7bit,最高位没有使用,因此,只能表示128个字符:ISO-8859-1(也叫L ...

  7. 路由器如何设置上网(TP-LINK)

    最近宿舍公用的网络一直不太稳定,正赶上毕业季,本来就打算自己买一台自用的路由器,于是我从一个毕业的师姐手里15RMB收了一台路由器,师姐还给了我一根5m的网线和两根全新15m的,感觉光网线就赚翻了. ...

  8. Thunder团队第三周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:i阅app Scrum Master:李传康 工作照片: 胡佑蓉在拍照,所以不在照片中. 参会成员: 王航:http://www.cnblogs. ...

  9. lintcode-167-链表求和

    167-链表求和 你有两个用链表代表的整数,其中每个节点包含一个数字.数字存储按照在原来整数中相反的顺序,使得第一个数字位于链表的开头.写出一个函数将两个整数相加,用链表形式返回和. 样例 给出两个链 ...

  10. CentOS 6安装thrift支持erlang开发

    早前,在我的博文thrift多平台安装介绍了如何在debian/ubuntu下面安装thrift,并支持erlang开发的.而在CentOS平台下,并没有成功安装.经过不断摸索,终于成功了,这篇博文就 ...