【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1834

【题目大意】

  给定一张有向图,每条边都有一个容量C和一个扩容费用W。
  这里扩容费用是指将容量扩大1所需的费用。求:
    1.在不扩容的情况下,1到N的最大流;
    2.将1到N的最大流增加K所需的最小扩容费用。

【题解】

  对于第一问,直接计算最大流即可,对于第二问,在最大流的残余网络上
  对于每条边建立费用为w容量无限的边,跑1到N的流量大小为k的费用流即可。

【代码】

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
const int INF=0x3f3f3f3f;
struct edge{int to,cap,cost,rev;};
const int MAX_V=10000;
int V,dist[MAX_V],prevv[MAX_V],preve[MAX_V];
int level[MAX_V],iter[MAX_V];
vector<edge> G[MAX_V];
void add_edge(int from,int to,int cap,int cost){
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
void bfs(int s){
memset(level,-1,sizeof(level));
queue<int> que;
level[s]=0;
que.push(s);
while(!que.empty()){
int v=que.front(); que.pop();
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&level[e.to]<0){
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f){
if(v==t)return f;
for(int &i=iter[v];i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&level[v]<level[e.to]){
int d=dfs(e.to,t,min(f,e.cap));
if(d>0){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}return 0;
}
int max_flow(int s,int t){
int flow=0;
for(;;){
bfs(s);
if(level[t]<0)return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0){
flow+=f;
}
}
}
int min_cost_flow(int s,int t,int f){
int res=0;
while(f>0){
fill(dist,dist+V,INF);
dist[s]=0;
bool update=1;
while(update){
update=0;
for(int v=0;v<V;v++){
if(dist[v]==INF)continue;
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost){
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=1;
}
}
}
}
if(dist[t]==INF)return -1;
int d=f;
for(int v=t;v!=s;v=prevv[v]){
d=min(d,G[prevv[v]][preve[v]].cap);
}f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}return res;
}
void clear(){for(int i=0;i<V;i++)G[i].clear();}
int N,M,K;
int cas=0,a[5010],b[5010],c[5010],w[5010];
void solve(){
V=N+1; clear();
for(int i=1;i<=M;i++)add_edge(a[i],b[i],c[i],0);
printf("%d ",max_flow(1,N));
for(int i=1;i<=M;i++)add_edge(a[i],b[i],INF,w[i]);
printf("%d\n",min_cost_flow(1,N,K));
}
int main(){
while(~scanf("%d%d%d",&N,&M,&K)){
for(int i=1;i<=M;i++)scanf("%d%d%d%d",&a[i],&b[i],&c[i],&w[i]);
solve();
}return 0;
}

BZOJ 1834 [ZJOI2010]network 网络扩容(费用流)的更多相关文章

  1. BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

    第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了. ---- ...

  2. bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一 ...

  3. bzoj 1834: [ZJOI2010]network 网络扩容【最大流+最小费用最大流】

    第一问直接跑最大流即可.建图的时候按照费用流建,费用为0. 对于第二问,在第一问dinic剩下的残量网络上建图,对原图的每条边(i,j),建(i,j,inf,cij),表示可以用c的花费增广这条路.然 ...

  4. bzoj 1834 [ZJOI2010]network 网络扩容(MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题意] 给定一个有向图,每条边有容量C,扩容费用W,问最大流和使容量增加K的最 ...

  5. bzoj 1834: [ZJOI2010]network 网络扩容

    #include<cstdio> #include<iostream> #include<cstring> #define M 100000 #define inf ...

  6. bzoj1834: [ZJOI2010]network 网络扩容 费用流

    bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...

  7. BZOJ 1834: [ZJOI2010]network 网络扩容(网络流+费用流)

    一看就知道是模板题= = ,不说什么了= = PS:回去搞期末了,暑假再来刷题了 CODE: #include<cstdio> #include<iostream> #incl ...

  8. BZOJ 1834: [ZJOI2010]network 网络扩容 最小费用流_最大流_残量网络

    对于第一问,跑一遍最大流即可. 对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用. 跑一遍最小费用流即可. Code: #include <vecto ...

  9. [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3330  Solved: 1739 [Subm ...

随机推荐

  1. Spring理论基础-面向切面编程

    AOP是Aspect-Oriented Programming的缩写,中文翻译是面向切面编程.作为Spring的特征之一,是要好好学习的. 首先面向切面编程这个名称很容易让人想起面向对象编程(OOP) ...

  2. Solaris 选择使用不同网口的操作

    机器上集成两个物理网口,由于先前使用的网口传输速率特别慢且容易丢包,故换成另一个网口,操作如下: 1.查看物理设备信息-- 显示可用的数据链路 root@238-spa:~# dladm show-p ...

  3. ms17-010 攻击win7漏洞复现

    只是为了好玩重新写一篇.利用还是很简单的. 将下载下来的rb放置在:/usr/share/metasploit-framework/modules/exploits/windows/smb/ 目录下 ...

  4. java===java基础学习(6)---流程控制,for,if,switch,continue,break

    注意点: for循环的用法和python截然不同,注意格式 switch~,switch对应的case每当执行完毕都要break,由于基本不怎么用switch,所以作为了解. 中断流程控制语句,请考虑 ...

  5. (十九)git版本管理软件——搭建git服务器

    创建管理员git 为管理员用户添加sudo权限 生成管理员秘钥 设置管理员git提交账号和邮箱 下载安装gitolite 启动gitolite 添加项目版本库 添加项目成员 项目成员下载项目 gito ...

  6. sunos kernel src leakrs

    https://github.com/joede/libezV24 https://github.com/ysei/siriusSparcV8 https://github.com/omniti-la ...

  7. swift中闭包的循环引用

    首先我们先创造一个循环引用 var nameB:(()->())? override func viewDidLoad() { super.viewDidLoad() let bu = UIBu ...

  8. 百度笔试题:malloc/free与new/delete的区别(转)

    百度笔试题:malloc/free与new/delete的区别 相同点:都可以申请动态内存和释放内存. 不同点: (1) 操作对象有所不同: malloc和free是C/C++的标准库函数,new和d ...

  9. JS页面之间传值

    父页面与子页面之间有多种传值的方式: 第一种,通过window.open的方法打开一个新的页面,在新的页面里面通过window.opener来获取对象,以下为实例 父页面: function open ...

  10. IE11中实现颜色渐变

    background: -ms-linear-gradient(left,#daa23e,#ad7f27); 下面是css3中颜色渐变对各个浏览器的写法:background: -webkit-lin ...