BZOJ 1834 [ZJOI2010]network 网络扩容(费用流)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1834
【题目大意】
给定一张有向图,每条边都有一个容量C和一个扩容费用W。
这里扩容费用是指将容量扩大1所需的费用。求:
1.在不扩容的情况下,1到N的最大流;
2.将1到N的最大流增加K所需的最小扩容费用。
【题解】
对于第一问,直接计算最大流即可,对于第二问,在最大流的残余网络上
对于每条边建立费用为w容量无限的边,跑1到N的流量大小为k的费用流即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
const int INF=0x3f3f3f3f;
struct edge{int to,cap,cost,rev;};
const int MAX_V=10000;
int V,dist[MAX_V],prevv[MAX_V],preve[MAX_V];
int level[MAX_V],iter[MAX_V];
vector<edge> G[MAX_V];
void add_edge(int from,int to,int cap,int cost){
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
void bfs(int s){
memset(level,-1,sizeof(level));
queue<int> que;
level[s]=0;
que.push(s);
while(!que.empty()){
int v=que.front(); que.pop();
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&level[e.to]<0){
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f){
if(v==t)return f;
for(int &i=iter[v];i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&level[v]<level[e.to]){
int d=dfs(e.to,t,min(f,e.cap));
if(d>0){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}return 0;
}
int max_flow(int s,int t){
int flow=0;
for(;;){
bfs(s);
if(level[t]<0)return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0){
flow+=f;
}
}
}
int min_cost_flow(int s,int t,int f){
int res=0;
while(f>0){
fill(dist,dist+V,INF);
dist[s]=0;
bool update=1;
while(update){
update=0;
for(int v=0;v<V;v++){
if(dist[v]==INF)continue;
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost){
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=1;
}
}
}
}
if(dist[t]==INF)return -1;
int d=f;
for(int v=t;v!=s;v=prevv[v]){
d=min(d,G[prevv[v]][preve[v]].cap);
}f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}return res;
}
void clear(){for(int i=0;i<V;i++)G[i].clear();}
int N,M,K;
int cas=0,a[5010],b[5010],c[5010],w[5010];
void solve(){
V=N+1; clear();
for(int i=1;i<=M;i++)add_edge(a[i],b[i],c[i],0);
printf("%d ",max_flow(1,N));
for(int i=1;i<=M;i++)add_edge(a[i],b[i],INF,w[i]);
printf("%d\n",min_cost_flow(1,N,K));
}
int main(){
while(~scanf("%d%d%d",&N,&M,&K)){
for(int i=1;i<=M;i++)scanf("%d%d%d%d",&a[i],&b[i],&c[i],&w[i]);
solve();
}return 0;
}
BZOJ 1834 [ZJOI2010]network 网络扩容(费用流)的更多相关文章
- BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)
第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然 后跑最小费用最大流就OK了. ---- ...
- bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一 ...
- bzoj 1834: [ZJOI2010]network 网络扩容【最大流+最小费用最大流】
第一问直接跑最大流即可.建图的时候按照费用流建,费用为0. 对于第二问,在第一问dinic剩下的残量网络上建图,对原图的每条边(i,j),建(i,j,inf,cij),表示可以用c的花费增广这条路.然 ...
- bzoj 1834 [ZJOI2010]network 网络扩容(MCMF)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题意] 给定一个有向图,每条边有容量C,扩容费用W,问最大流和使容量增加K的最 ...
- bzoj 1834: [ZJOI2010]network 网络扩容
#include<cstdio> #include<iostream> #include<cstring> #define M 100000 #define inf ...
- bzoj1834: [ZJOI2010]network 网络扩容 费用流
bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...
- BZOJ 1834: [ZJOI2010]network 网络扩容(网络流+费用流)
一看就知道是模板题= = ,不说什么了= = PS:回去搞期末了,暑假再来刷题了 CODE: #include<cstdio> #include<iostream> #incl ...
- BZOJ 1834: [ZJOI2010]network 网络扩容 最小费用流_最大流_残量网络
对于第一问,跑一遍最大流即可. 对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用. 跑一遍最小费用流即可. Code: #include <vecto ...
- [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MB Submit: 3330 Solved: 1739 [Subm ...
随机推荐
- div+css实现表头固定内容滚动表格
<div class="m-demo"> <table> <thead> <tr><th>定宽a</th>& ...
- vue手势解决方案
1.需求 因为项目中要做一个可以移动.旋转和放缩具有合成图片的功能,例如: 剑可以随意移动,然后把位移.旋转角度和放缩值传给后台进行合成. 2.解决方案 网上搜到手势插件AlloyFinger,htt ...
- js_layer弹窗的使用和总结
2018-04-10 一张呈现给用户的网页,会有很多种交互,比如连不上网络,用户点击按钮时向后台请求数据不成功等等.像这些情况,用户是看不见的, 要给用户更好的体验,在特定的时间,给客户反馈内容.实时 ...
- C++转换构造函数和隐式转换函数 ~ 转载
原文地址: C++转换构造函数和隐式转换函数 用转换构造函数可以将一个指定类型的数据转换为类的对象.但是不能反过来将一个类的对象转换为一个其他类型的数据(例如将一个Complex类对象转换成doubl ...
- 【转】Android - Binder机制
以下几篇文章是分析binder机制里讲得还算清楚的 目录 1. Android - Binder机制 - ServiceManager 2. Android - Binder机制 - 普通servic ...
- java===java基础学习(10)---对象构造
重载 如果多个方法有相同的名字,不同的参数,便产生了重载.编译器必须挑选出具体执行哪个方法,他通过用各个方法给出的参数类I型那个与特定方法调用所使用的值类型进行匹配来挑选出相应的方法.如果编译器找不到 ...
- 内核抢占实现(preempt) 【转】
转自:http://blog.chinaunix.net/uid-12461657-id-3353217.html 一.什么叫抢占所谓抢占,说白了就是进程切换.linux的用户空间,进程A在执行中,来 ...
- 【bzoj4868】期末考试
我还第一次见到省选考三分……? #include<bits/stdc++.h> #define N 200005 using namespace std; typedef long lon ...
- Math.random易于记忆理解
产生随机数 Math.random*(Max-Min)+Min
- 《java并发编程实战》读书笔记10--显示锁Lock,轮询、定时、读写锁
第13章 显示锁 终于看到了这本书的最后一本分,呼呼呼,真不容易.其实说实在的,我不喜欢半途而废,有其开始,就一定要有结束,否则的话就感觉哪里乖乖的. java5.0之前,在协调对共享对象的访问时可以 ...