【Kruskal】舒适的路线
[codevs1001]舒适的路线
Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。
Z小镇附近共有
N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤5000)条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。频繁的改变速度使得游客们很不舒服,因此大家从一个景点前往另一个景点的时候,都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。
第一行包含两个正整数,N和M。
接下来的M行每行包含三个正整数:x,y和v(1≤x,y≤N,0 最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。
样例1
4 2
1 2 1
3 4 2
1 4
样例2
3 3
1 2 10
1 2 5
2 3 8
1 3
样例3
3 2
1 2 2
2 3 4
1 3
样例1
IMPOSSIBLE
样例2
5/4
样例3
2
N(1<N≤500)
M(0<M≤5000)
Vi在int范围内
试题分析:本题看似最小生成树解毫无头绪,其实我们只需要确定一个最短边,最长边就被确定出来了
我们进行如下操作:
①枚举一个最短边(当前生成树的)
②枚举一个最长边(当前生成树,可以被以后比他大的边替代的)
1.将最短边与最长边合并
2.如果现在最长边/最短边已经大于ans了,那么枚举比现在的最长边还大的边当最长边是对答案没有意义的事了,可以break
3.如果现在S到T联通,那么就可以直接更新答案(之前的所有ans1都小于ans,现在满足条件了就可以更新)
③除以最大公约数
这类题(最大边和最小边关系的最值操作)都可以用这个架构来解决,如Uva1395这道题,就在此题基础上改一改就好了
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
int N,M;
struct data{
int x,y,v;
}e[5001]; bool cmp(data a,data b){
return a.v<b.v;
}
int fa[5001];
void init(){
for(int i=1;i<=N;i++) fa[i]=i;
return ;
}
int find(int x){
if(x!=fa[x]) return fa[x]=find(fa[x]);
return x;
}
int ans1,ans2;
int gcd(int a,int b){if(b==0) return a;return gcd(b,a%b);} int main(){
N=read(),M=read();
for(int i=1;i<=M;i++){
e[i].x=read(),e[i].y=read();
e[i].v=read();
}
ans1=ans2=-1;
int S=read(),T=read();
sort(e+1,e+M+1,cmp);
for(int i=1;i<=M;i++){
init();
for(int j=i;j<=M;j++){
int u=find(e[j].x),v=find(e[j].y);fa[v]=u;
if(ans1!=-1&&((double)((double)e[j].v/(double)e[i].v))>=((double)((double)ans2/(double)ans1))) break;
if(find(S)==find(T)) {ans1=e[i].v;ans2=e[j].v;break;}
}
if(ans1==-1){puts("IMPOSSIBLE");return 0;}
}
int k=gcd(ans1,ans2);
ans1/=k;ans2/=k;
if(ans1==1) printf("%d\n",ans2);
else printf("%d/%d",ans2,ans1);
}
【Kruskal】舒适的路线的更多相关文章
- codevs 1001 舒适的路线(Kruskal)
传送门 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤5 ...
- 求最大边/最小边的比值最小的路径 codevs 1001 舒适的路线
codevs 1001 舒适的路线 2006年 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Z小镇是一个景色宜人 ...
- [题解]codevs1001 舒适的路线
h3 { font-family: Consolas; color: #339966 } .math { font-family: Consolas; color: gray } 题目描述 Descr ...
- [codevs1001]舒适的路线
[codevs1001]舒适的路线 试题描述 Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N(1<N≤500)个景点(编号为1,2,3,-,N),这些景点被M(0 ...
- AC日记——舒适的路线 codevs 1001 (并查集+乱搞)
1001 舒适的路线 2006年 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description Z小镇是 ...
- Codevs 1001 舒适的路线 2006年 NOIP全国联赛提高组
1001 舒适的路线 2006年 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Z小镇是一个景色宜人的地方,吸引来自各地的观 ...
- codevs 1001 舒适的路线 (并查集)
题目描述 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光. Z小镇附近共有 N(<N≤)个景点(编号为1,,,…,N),这些景点被M(<M≤)条道路连 ...
- codevs1001 舒适的路线 - 贪心 - 并查集
题目描述 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤ ...
- 舒适的路线(codevs 1001)
题目描述 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤ ...
随机推荐
- 创建Fragment和传递数值
下面在扩展一下创建Fragment和传递数值 如果我们不需要传递数值,那就直接可以在宿主activity中,跟平常一样创建fragment,但是如果我们需要传递数据的话,可以使用newInstance ...
- perl中设置POST登录时的重定向
默认地, perl提交post登录时是不会重定向的 要让它重定向, 可以用如下方法: my $cookie = HTTP::Cookies->new(); push @{$ua->requ ...
- js作用域与上下文
作用域:与调用函数,访问变量的能力有关 作用域分为:局部和全局(在局部作用域里可以访问到全局作用域的变量,但在局部作用域外面就访问不到局部作用里面所设定的变量) 上下文:与this关键字有关 是调用当 ...
- MACACA===gradle下载和安装
gradle下载地址: http://services.gradle.org/distributions/ 或者直接点击这个: http://services.gradle.org/distribut ...
- linux运维记
nmap 127.0.0.1 命令查看当前服务器对外有多少端口,用于检查漏洞 vim ctrl+z ,jobs,fg 切换控制应用程序 vim 执行命令 #!sh aa.sh执行命令 运维系统监控开源 ...
- 【bzoj2006】NOI2010超级钢琴
补了下前置技能…… 题意就是求一段区间的权值和前k大的子序列的和. 把段扔进优先队列 每次拿出来之后按照所选择的j进行分裂 #include<bits/stdc++.h> #define ...
- canvas画画板,canvas画五角星,canvas制作钟表、Konva写钟表
制作一个画画板,有清屏有橡皮擦有画笔可以换颜色 style样式 <head> <meta charset="UTF-8"> <title>画画板 ...
- 启动另一个activity
1. 只负责启动 Intent intent = new Intent(mContext, BookOrderActivity.class); Bundle mEmployeeBundle = new ...
- sense之间的数据传输
下面介绍一种原界面向目标界面传值 和 两种 由目标界面返回值给原界面的方法 界面解释: a界面和b界面都在导航控制器中, a界面触发时间跳转至b界面,b界面上设定完毕数据后返回a界面 a界面:原界面 ...
- NativeScriptEngineService 被调用流程
AbsractSearchScritp 有个lookup! NativeScriptEngineService search()会调用 script.setLookup() NativeScriptE ...