http://www.lydsy.com/JudgeOnline/problem.php?id=3432

题目说要相互可达,但是只需要从某个点做bfs然后判断其它点是否可达即可。

原因太简单了。。。。。因为它是abs

所以我们二分D,然后判断即可

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr2(a, b, c) for1(i, 1, b) { for1(j, 1, c) cout << a[i][j]; cout << endl; }
#define printarr1(a, b) for1(i, 1, b) cout << a[i]; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=505, M=300005, dx[]={-1, 1, 0, 0}, dy[]={0, 0, 1, -1};
int mp[N][N], must[N][N], n, m, front, tail, vis[N][N], X, Y;
struct dat{ int x, y; }q[M]; void bfs(int D) {
for1(i, 1, n) for1(j, 1, m) vis[i][j]=0;
front=tail=0;
q[tail].x=X, q[tail++].y=Y; vis[X][Y]=1;
int x, y;
while(tail!=front) {
dat &t=q[front++]; if(front==M) front=0;
x=t.x, y=t.y;
rep(i, 4) {
int fx=dx[i]+x, fy=dy[i]+y;
if(fx<1 || fy<1 || fx>n || fy>m || vis[fx][fy] || abs(mp[fx][fy]-mp[x][y])>D) continue;
vis[fx][fy]=1;
q[tail].x=fx; q[tail++].y=fy; if(tail==M) tail=0;
}
}
}
bool check(int D) {
bfs(D);
for1(i, 1, n) for1(j, 1, m) if(must[i][j]==1 && !vis[i][j]) return false;
return true;
} int main() {
int mx=0;
read(n); read(m);
for1(i, 1, n) for1(j, 1, m) read(mp[i][j]), mx=max(mx, mp[i][j]);
for1(i, 1, n) for1(j, 1, m) {
read(must[i][j]); if(must[i][j]==1) X=i, Y=j;
}
int l=0, r=mx;
while(l<=r) {
int mid=(l+r)>>1;
if(check(mid)) r=mid-1;
else l=mid+1;
}
print(r+1);
return 0;
}

Description

The cross-country skiing course at the winter Moolympics is described by an M x N grid of elevations (1 <= M,N <= 500), each elevation being in the range 0 .. 1,000,000,000. Some of the cells in this grid are designated as waypoints for the course. The organizers of the Moolympics want to assign a difficulty rating D to the entire course so that a cow can reach any waypoint from any other waypoint by repeatedly skiing from a cell to an adjacent cell with absolute elevation difference at most D. Two cells are adjacent if one is directly north, south, east, or west of the other. The difficulty rating of the course is the minimum value of D such that all waypoints are mutually reachable in this fashion.

N*M的格子,每个格子都有一个分值v,有的格子一定要经过.两个格子i,j可以互相到达,当且仅当它们有一条边重复(即上下左右方向),且abs(vi-vj)<=D.

Input

* Line 1: The integers M and N.

* Lines 2..1+M: Each of these M lines contains N integer elevations.

* Lines 2+M..1+2M: Each of these M lines contains N values that are
either 0 or 1, with 1 indicating a cell that is a waypoint.

Output

* Line 1: The difficulty rating for the course (the minimum value of D
such that all waypoints are still reachable from each-other).

Sample Input

3 5
20 21 18 99 5
19 22 20 16 26
18 17 40 60 80
1 0 0 0 1
0 0 0 0 0
0 0 0 0 1

INPUT DETAILS: The ski course is described by a 3 x 5 grid of
elevations. The upper-left, upper-right, and lower-right cells are
designated as waypoints.

Sample Output

21

OUTPUT DETAILS: If D = 21, the three waypoints are reachable from
each-other. If D < 21, then the upper-right waypoint cannot be
reached from the other two.

HINT

Source

【BZOJ】3432: [Usaco2014 Jan]Cross Country Skiing (bfs+二分)的更多相关文章

  1. BZOJ 3432: [Usaco2014 Jan]Cross Country Skiing (二分+染色法)

    还是搜索~~可以看出随着D值的增大能到达的点越多,就2分d值+染色法遍历就行啦~~~ CODE: #include<cstdio>#include<iostream>#incl ...

  2. 洛谷 题解 P4955 【[USACO14JAN]Cross Country Skiing 越野滑雪】

    二分+DFS 看到这么多大佬写了并查集,BFS的,还没有人写DFS版的,那么肯定是要来水水积分的啦毕竟这可是道伪紫题呢! 做法楼上楼下也讲得很清楚了吧,详见代码的注释 #include<bits ...

  3. BZOJ 3430: [Usaco2014 Jan]Ski Course Rating(并查集+贪心)

    题面 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 136 Solved: 90 [Submit][Status][Discuss] Descript ...

  4. BZOJ 3433 [Usaco2014 Jan]Recording the Moolympics:贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3433 题意: 给出n个区间[a,b). 有两个记录器,每个记录器中存放的区间不能重叠. 求 ...

  5. bzoj 1594: [Usaco2008 Jan]猜数游戏【二分+线段树】

    写错一个符号多调一小时系列-- 二分答案,然后判断这个二分区间是否合法: 先按值从大到小排序,然后对于值相同的一些区间,如果没有交集则不合法:否则把并集在线段树上打上标记,然后值小于这个值的区间们,如 ...

  6. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线 (二分+最短路)

    题意: 给一个2e4带正边权的图,可以免费k个边,一条路径的花费为路径上边权最大值,问你1到n的最小花费 思路: 对于一个x,我们如果将大于等于x的边权全部免费,那么至少需要免费的边的数量就是 “设大 ...

  7. BZOJ3433: [Usaco2014 Jan]Recording the Moolympics

    3433: [Usaco2014 Jan]Recording the Moolympics Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 55  So ...

  8. 3433: [Usaco2014 Jan]Recording the Moolympics

    3433: [Usaco2014 Jan]Recording the Moolympics Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 137  S ...

  9. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

随机推荐

  1. npm install 报错:node-pre-gyp ERR! 问题解决

    npm install报错问题解决 问题: E:\CodeSpace\GitlabTest\desktop>npm install > lifeccp-desktop@1.1.9 post ...

  2. JMeter 十六:加密处理

    假设采用MD5进行加密 JMeter 内置的没有MD5加密方法.网上有说采用__MD5函数的,但是我在 Jmeter 2.13 以及 Jmeter 3.2 版本上都没有找到这个函数,官方文档也没有看到 ...

  3. css网页单位

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. HDU 1073 Online Judge(字符串)

    Online Judge Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  5. [Swift A] - 实战-豆瓣电台总结

    最近在学Swift,也是刚刚开始.这里对自己最近所学做个简单的总结:视频和代码都在下面 http://pan.baidu.com/s/1sjHd5qX 1.String和NSString的不同 Swi ...

  6. 用interrupt()中断Java线程

    最近在学习Java线程相关的东西,和大家分享一下,有错误之处欢迎大家指正. 假如我们有一个任务如下,交给一个Java线程来执行,如何才能保证调用interrupt()来中断它呢? class ATas ...

  7. HttpClient4.3教程 第二章 连接管理

    2.1.持久连接 两个主机建立连接的过程是很复杂的一个过程,涉及到多个数据包的交换,并且也很耗时间.Http连接需要的三次握手开销很大,这一开销对于比较小的http消息来说更大.但是如果我们直接使用已 ...

  8. Python-PyQt4学习资料汇总

    摘自:http://www.cnblogs.com/coderzh/archive/2009/06/28/1512654.html 官方文档: http://pyqt.sourceforge.net/ ...

  9. Android TCP/IP Socket Test

    TCP/IP协议:Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本 ...

  10. 电子商务(电销)平台中用户模块(User)数据库设计明细(转载)

    电子商务(电销)平台中用户模块(User)数据库设计明细 以下是自己在电子商务系统设计中的订单模块的数据库设计经验总结,而今发表出来一起分享,如有不当,欢迎跟帖讨论~ 用户基础表(user_base) ...