1、相机模型,内参数和外参数矩阵,相机标定;

2、极线约束和本征矩阵;特征点提取与匹配;提取到的特征点计算本征矩阵(五对以上的点)findEssentialMat(),需啊要点对,焦距参数,cx,cy参数等;

3、分解本征矩阵,获取相对变换R和T:     int pass_count = recoverPose(E, p1, p2, R, T, focal_length, principle_point, mask);

4、现在已经知道了两个相机之间的变换矩阵R和T,还有每一对匹配点的坐标。三维重建就是通过这些已知信息还原匹配点在空间当中的坐标.用三角化重建三维模型;proj1和proj2分别为跟R和T相关的3*4矩阵;

//三角化重建 triangulatePoints(proj1, proj2, p1, p2, structure);

//××××××××××××××××××××××多目三位重建××××××××××××××××××××

5、求第三个相机的变换矩阵:

5.1最简单的想法,就是沿用双目重建的方法,即在第三幅图像和第一幅图像之间提取特征点,然后调用findEssentialMat和recoverPose。那么加入第四幅、第五幅,乃至更多呢?随着图像数量的增加,新加入的图像与第一幅图像的差异可能越来越大,特征点的提取变得异常困难,这时就不能再沿用双目重建的方法了。

5.2 那么能不能用新加入的图像和相邻图像进行特征匹配呢?比如第三幅与第二幅匹配,第四幅与第三幅匹配,以此类推。当然可以,但是这时就不能继续使用findEssentialMat和recoverPose来求取相机的变换矩阵了,因为这两个函数求取的是相对变换,比如相机三到相机二的变换,而我们需要的是相机三到相机一的变换。有人说,既然知道相机二到相机一的变换,又知道相机到三到相机二的变换,不就能求出相机三到相机一的变换吗?实际上,通过这种方式,你只能求出相机三到相机一的旋转变换(旋转矩阵R),而他们之间的位移向量T,是无法求出的。这是因为上面两个函数求出的位移向量,都是单位向量,丢失了相机之间位移的比例关系。

5.3我们要怎么解决这些问题?现在请出本文的主角——solvePnP和solvePnPRansac.根据OpenCV官方解释,该函数根据空间中的点与图像中的点的对应关系,求解相机在空间中的位置。也就是说,我知道一些空间当中点的坐标,还知道这些点在图像中的像素坐标,那么solvePnP就可以告诉我相机在空间当中的坐标。solvePnP和solvePnPRansac所实现的功能相同,只不过后者使用了随机一致性采样,使其对噪声更鲁棒,本文使用后者。有这么好的函数,怎么用于我们的三维重建呢?首先,使用双目重建的方法,对头两幅图像进行重建,这样就得到了一些空间中的点,加入第三幅图像后,使其与第二幅图像进行特征匹配,这些匹配点中,肯定有一部分也是图像二与图像一之间的匹配点,也就是说,这些匹配点中有一部分的空间坐标是已知的,同时又知道这些点在第三幅图像中的像素坐标,嗯,solvePnP所需的信息都有了,自然第三个相机的空间位置就求出来了。由于空间点的坐标都是世界坐标系下的(即第一个相机的坐标系),所以由solvePnP求出的相机位置也是世界坐标系下的,即相机三到相机一的变换矩阵.

6、加入更多图像

通过上面的方法得到相机三的变换矩阵后,就可以使用上一篇文章提到的triangulatePoints方法将图像三和图像二之间的匹配点三角化,得到其空间坐标。为了使之后的图像仍能使用以上方法求解变换矩阵,我们还需要将新得到的空间点和之前的三维点云融合。已经存在的空间点,就没必要再添加了,只添加在图像二和三之间匹配,但在图像一和图像三中没有匹配的点。如此反复。 

7、多目重建的累积误差解决?BA方法,如何求解BA?总体思想是使用梯度下降,比如高斯-牛顿迭代、Levenberg-Marquardt算法等

SFM的更多相关文章

  1. [摘抄] SFM 和 Visual SLAM

    来自知乎: SFM和vSLAM基本讨论的是同一问题,不过SFM是vision方向的叫法,而vSLAM是robotics方向的叫法. vSLAM所谓的mapping,vision方向叫structure ...

  2. 一个sfm开源项目

    Structure from Motion 资料总结 https://blog.csdn.net/u014636245/article/details/77527627 github上用opencv实 ...

  3. SFM学习

    摘自李翠http://www.cnblogs.com/serser/p/6598621.html SFM 1.相机模型,内参数和外参数矩阵,相机标定: 2.极线约束和本征矩阵:特征点提取与匹配:提取到 ...

  4. Structure From Motion(SFM,从运动恢复结构)

    Structure From Motion(SFM,从运动恢复结构) 阅读相关文献: Wu et al. Multicore Bundle Adjustment Agarwal et. al. Bun ...

  5. SfM环境的搭建windows8.1+vs2010

    SfM即Structure form Motion,这个算法的实现,作者Noah Snavely给出了一个具体的实现. 目前最新下载https://github.com/snavely/bundler ...

  6. 三维重建:SFM中BA的并行化

    1. BA在重建中的作用 借鉴于运动中重建的方法,BA引入SLAM过程,而传统的滤波方法引入BA是跟随闭环检测出现. 1.1 BA在滤波方法中的嵌入 PTAM 1.2 BA在闭环检测之后的应用 在三维 ...

  7. SFM学习记录(二)

    分析生成文件 在.nvm.cmvs/00/下有:(也可能是其他数字) models/option-0000.ply:是生成的密集点云模型 txt:文件夹下(还没弄明白ν_v) visualize:保存 ...

  8. SFM(structure from motion)学习记录(一)

    visualSFM用法 添加图片 "File->Open Multi Images". 一次添加多幅图片 "SfM->Load NView Match&quo ...

  9. Windows7系统下OpenCV2.4.4+PCL1.6.0+SSBA3.0+VS2010 IDE32环境下编译和安装以实现Sfm和PCL点云数据可视化

    最近在学习<深入理解OpenCV:实用计算机视觉项目解析>一书的第三章和第四章时,遇到很多编译问题,书中又没有详细的讲解环境配置和搭建过程.经过多天的捉摸.调试.排错终于将两章的程序都调试 ...

  10. OpenCV实现SfM(三):多目三维重建

    http://lib.csdn.net/article/opencv/24548 注意:本文中的代码必须使用OpenCV3.0或以上版本进行编译,因为很多函数是3.0以后才加入的. 目录: 问题简化 ...

随机推荐

  1. Python 函数参数类型大全(非常全!!!)

    Python 函数参数类型大全(非常全!!!) 1.在python编写程序里面具有函数文档,它的主要作用是为了让别人可以更好的理解你的函数,所以这是一个好习惯,访问函数文档的方式是: MyFuncti ...

  2. 安迪的第一个字典 (Andy's First Dictionary,UVa10815)

    题目描述: #include<iostream> #include<string> #include<set> #include<sstream> us ...

  3. mvc中actionresult的返回值类型

    以前一直没注意actionresult都能返回哪些类型的类型值(一直用的公司的内部工具类初始化进行返回的),今天跟大家分享一下(也是转载的别人的日志qaq). 首先我们了解一下对action的要求: ...

  4. Ubuntu 常用软件推荐(QQ、微信、MATLAB等)及安装过程

    1. Wine QQ QQ 移植到 Linux 一直是一个比较头疼的问题,但我们日常交流.传输文件又离不开这个软件.在网上一番搜寻尝试后,发现最好的替代方案就是 Wine QQ,版本也还比较新,缺点是 ...

  5. 1.linux环境配置

    首先说一下,这里是虚拟机环境. 1.用vbox安装centos6.8-mini 注意不要使用复制的方式安装,复制的虚拟机网络不通 安装如下: 主机 ip 角色 内存 hadoop1 192.168.0 ...

  6. Linux下安装paramiko

    paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. 由于使用的是python这样的能够跨平台运行的语言,所以所有python支持的平台, ...

  7. Swift-枚举enum理解

    //定义一个枚举 //枚举的语法,enum开头,每一行成员的定义使用case关键字开头,一行可以定义多个关键字 enum CompassPoint { case North case South ca ...

  8. grid++json页面数据传入

    最近遇到一个问题,就是要用Grid++做页面数据报表打印,但是翻了Grid++文档就是没有直接从页面上传数据的,都是要加载txt文档,填写txt文档的url.自己尝试直接页面上传JSON数据到Grid ...

  9. 201621044079 week13 网络

    作业13-网络 1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以 ...

  10. 理解BitSet

    先来看几道面试题: 1.统计40亿个数据中没有出现的数据,将40亿个不同数据进行排序. 2.现在有1千万个随机数,随机数的范围在1到1亿之间,要求写出一种算法,将1到1亿之间没有在随机数中的数求出来. ...