http://www.lydsy.com/JudgeOnline/problem.php?id=2458

Description

Xaviera现在遇到了一个有趣的问题。
平面上有N个点,Xaviera想找出周长最小的三角形。
由于点非常多,分布也非常乱,所以Xaviera想请你来解决这个问题。
为了减小问题的难度,这里的三角形也包括共线的三点。

Input

第一行包含一个整数N表示点的个数。
接下来N行每行有两个整数,表示这个点的坐标。

Output

输出只有一行,包含一个6位小数,为周长最短的三角形的周长(四舍五入)。

Sample Input

4
1 1
2 3
3 3
3 4

Sample Output

3.414214

HINT

100%的数据中N≤200000。

————————————————

哇作为练手平面分治的题我好高兴,一次A了。

不过最开始怀疑自己的思路有问题于是查了题解……然后发现竟然是对的。

额……

复述一下,和平面分治差不多,将solve函数的含义改为当前区间内最小三角形的周长。

然后我们发现对于一个三角形两点之间长度最大为d/2。

所以我们在归并排序y的时候把和中轴距离d/2的点捡出来。

然后三重循环枚举搞定(同时距离d/2不要忘了)

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl INF=1e20;
const int N=;
inline int read(){
int X=,w=; char ch=;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
dl x;
dl y;
}p[N],a[N],b[N];
bool cmp(node A,node B){
return A.x<B.x;
}
inline dl dis(int i,int j){
return sqrt(pow(b[i].x-b[j].x,)+pow(b[i].y-b[j].y,));
}
dl solve(int l,int r){
if(l>=r)return INF;
int mid=(l+r)>>;
dl x0=(p[mid].x+p[mid+].x)/2.0;
dl d=min(solve(l,mid),solve(mid+,r));
int l1=l,r1=mid+,num=;
for(int i=l;i<=r;i++){
if(l1<=mid&&(r1>r||p[l1].y<p[r1].y)){
a[i]=p[l1++];
if(x0-d/<a[i].x)b[++num]=a[i];
}else{
a[i]=p[r1++];
if(a[i].x<x0+d/)b[++num]=a[i];
}
}
for(int i=l;i<=r;i++)p[i]=a[i]; for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(b[j].y-b[i].y>=d/)break;
for(int k=j+;k<=num;k++){
if(b[k].y-b[j].y>=d/)break;
d=min(d,dis(i,j)+dis(j,k)+dis(k,i));
}
}
}
return d;
}
int main(){
int n=read();
for(int i=;i<=n;i++){
p[i].x=read();
p[i].y=read();
}
sort(p+,p+n+,cmp);
printf("%.6f\n",solve(,n));
return ;
}

BZOJ2458:[BJOI2011]最小三角形——题解的更多相关文章

  1. bzoj2458: [BeiJing2011]最小三角形(分治+几何)

    题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...

  2. BZOJ2458 Beijing2011最小三角形(分治)

    类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形. 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边 ...

  3. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  4. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  5. [BZOJ2458][BeiJing2011]最小三角形(分治)

    求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...

  6. BZOJ2458: [BeiJing2011]最小三角形

    类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...

  7. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  8. BZOJ 2458 最小三角形 | 平面分治

    BZOJ 2458 最小三角形 题面 一个平面上有很多点,求他们中的点组成的周长最小的三角形的周长. 题解 跟平面最近点对差不多,也是先把区间内的点按x坐标从中间分开,递归处理,然后再处理横跨中线的三 ...

  9. BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治

    题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...

随机推荐

  1. Python中安装Prophet

    1. 先安装pystan依赖 按照https://pystan.readthedocs.io/en/latest/windows.html说明,请使用如下命令 conda install libpyt ...

  2. Java开发工程师(Web方向) - 02.Servlet技术 - 期末考试

    Servlet课程考试 Servlet课程考试 Servlet课程考试 总分:55分 限定时间:120分钟 进入考试 答案已成功提交!请耐心等待成绩公布 Servlet课程考试: 1(12分) 简单谈 ...

  3. TW实习日记:第24-25天

    项目的交付期是真的赶...一直在不断地修改一些小bug,然后消息推送功能出了一个问题,就是不知道为什么PC端会发送两次消息到移动端后台.其中第一条正常第二条会有乱码不正常,可以说是很奇怪了,一开始都认 ...

  4. Java基础知识:Java实现Map集合二级联动1

    Java实现Map集合二级联动 Map集合可以保存键值映射关系,这非常适合本实例所需要的数据结构,所有省份信息可以保存为Map集合的键,而每个键可以保存对应的城市信息,本实例就是利用Map集合实现了省 ...

  5. LINUX监控一:监控命令

    简单的整理一下常用的linux监控命令 本篇参考了:http://www.cnblogs.com/JemBai/archive/2010/07/30/1788484.html的内容 1.top top ...

  6. 常用正则表达式,你要的都在这里(校验字符,数字,特殊需求qq,电话等)

    一.校验数字的表达式 1 数字:^[0-9]*$ 2 n位的数字:^\d{n}$ 3 至少n位的数字:^\d{n,}$ 4 m-n位的数字:^\d{m,n}$ 5 零和非零开头的数字:^(0|[1-9 ...

  7. sql分页使用join提高性能

    今天在分析系统中的分页sql时意外知道了使用join可以提高分页性能. 逻辑是join部分使用单一表,单一字段排序分页,然后join大表.

  8. JAVA单态设计模式

    核心--在类的内部把构造器私有化,同时在内部产生对象,并通过类.静态方法(static)返回实例化对象的引用   设计模式是在大量的实践总结和理论化之后优选的代码结果,编程风格,以及解决问题的思考方式 ...

  9. iOS开发多线程编程2 - NSOperation

    1.简介 NSOperation实例封装了需要执行的操作和执行操作所需的数据,并且能够以并发或非并发的方式执行这个操作. NSOperation本身是抽象基类,因此必须使用它的子类,使用NSOpera ...

  10. node中的__dirname

    先说结论:__dirname指的是当前文件所在文件夹的绝对路径. 测试路径如下: 即 根目录/dir0.js 根目录/path1/dir1.js 根目录/paht1/path2/dir2.js 每个d ...