当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数。此时需要利用优化的极大似然估计:EM算法。

在这里我只是想要使用这个EM算法估计混合高斯模型中的参数。由于直观原因,采用一维高斯分布。

一维高斯分布的概率密度函数表示为:

多个高斯分布叠加在一起形成混合高斯分布:

其中:k 表示一共有 k 个子分布,。为什么累加之和为 1?因为哪怕是混合模型也表示一个概率密度,从负无穷到正无穷积分概率为 1,所以只有累加之和为 1才能保证,很简单的推导。

设总体 ξ,总体服从混合高斯分布。 是一个取自总体的样本。罢了,公式编辑实在慢到令人发指,简单记录而已,手写。

以下是关于一维混合高斯分布的参数估计推导过程:

参考:周志华《机器学习》

简单代码实现一下,代码很丑:

import numpy as np
import matplotlib.pyplot as plt # 使用 numpy 生成两组符合高斯分布(正态分布)的数据,然后将他们累加成混合模型,使用 EM 算法求解其中参数
# 假设两个分布累加的系数 α1=0.6,α2=0.4
# 假设 N1 分布的均值 μ1=1.7,方差 δ1²=0.57²=0.3249
# 假设 N2 分布的均值 μ2=3.5,方差 δ2²=0.33²=0.1089
np.random.seed(77)
num1 = 6000
num2 = 4000
X1 = np.random.normal(1.7, 0.57, num1).astype(np.float32)
X2 = np.random.normal(3.5, 0.33, num2).astype(np.float32)
X = np.hstack((X1, X2)) # 其中包含两个高斯分布的数据
np.random.shuffle(X) # 混洗数据 re_tuple = plt.hist(X, 300, density=1, facecolor='r')
plt.show() # 设置 EM 算法的初始值,任意设置
modulus = np.array([0.2, 0.8])
mean = np.array([1.1, 2.1])
var = np.array([1.2, 1.5]) # 首先计算每个样本点由每一个独立分布产生的概率,然后通过推导公式去更新参数
gamma_j_i = np.zeros((2, num1 + num2), dtype=np.float32) # 设置迭代次数
epochs = 100
for epoch in range(epochs):
print('开始第 %d 次迭代 ...' % (epoch + 1))
# E 步
part_1 = 1 / np.sqrt(2 * np.pi * var[0])
part_2 = 1 / np.sqrt(2 * np.pi * var[1])
for i in range(2):
part_i = 1 / np.sqrt(2 * np.pi * var[i])
for j in range(num1 + num2):
p_m = (modulus[0] * (part_1 * np.exp(-1 * ((X[j] - mean[0]) ** 2) / (2 * var[0]))) +
modulus[1] * (part_2 * np.exp(-1 * ((X[j] - mean[1]) ** 2) / (2 * var[1]))))
p_i = modulus[i] * (part_i * np.exp(-1 * ((X[j] - mean[i]) ** 2) / (2 * var[i])))
gamma_j_i[i, j] = p_i / p_m # 中间计算步骤
sum_gamma_j_i = np.sum(gamma_j_i, axis=1)
sum_for_mean = np.matmul(gamma_j_i, X)
sum_for_var = np.sum(gamma_j_i * np.square(np.broadcast_to(X, (2, num1 + num2)) - mean.reshape((2, 1))), axis=1) # M 步
for i in range(2):
mean[i] = sum_for_mean[i] / sum_gamma_j_i[i]
modulus[i] = sum_gamma_j_i[i] / (num1 + num2)
var[i] = sum_for_var[i] / sum_gamma_j_i[i] print('迭代 %d 次后得到的 N1 分布的比率、均值和方差分别为:%s %s %s' % (epoch + 1, modulus[0], mean[0], var[0]))
print('迭代 %d 次后得到的 N2 分布的比率、均值和方差分别为:%s %s %s' % (epoch + 1, modulus[1], mean[1], var[1]))
print() # 迭代 100 次后得到的结果是:
# N1: 0.59798 1.69166 0.33037
# N2: 0.40202 3.49959 0.11023
# 总之,结果还不错

记录:EM 算法估计混合高斯模型参数的更多相关文章

  1. EM算法与混合高斯模型

    非常早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到非常好的应用.这个算法公式太多就手写了这部分主体部分. 好的參考博客:最大似然预计到EM,讲了详细样例通熟易懂. JerryLead博客非 ...

  2. <转>与EM相关的两个算法-K-mean算法以及混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  3. EM相关两个算法 k-mean算法和混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  4. 机器学习3_EM算法与混合高斯模型

    ①EM算法: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 李航 <统计学习方法>9.1节 ②混合高斯模 ...

  5. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  6. 混合高斯模型:opencv中MOG2的代码结构梳理

    /* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...

  7. sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM

    1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...

  8. 混合高斯模型(Mixtures of Gaussians)和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...

  9. PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...

随机推荐

  1. Configure Monit on AWS CentOS7 to guard Squid proxy

    Install Monit:sudo -iamazon-linux-extras install epelyum -y install monit Config monit: vim /etc/mon ...

  2. 线程:生命周期、实现方式、start()和run()的区别!

    1.线程的生命周期 要想实现多线程,必须在主线程中创建新的线程对象.Java语言使用Thread类及其子类的对象来表示线程,在它的 一个完整的生命周期中通常要经历如下的五种状态: 新建:当一个Thre ...

  3. oracle中给某个用户某张表的权限设置

    今天碰到需要给数据库上某一个用户,开通其中2张表的查询权限,方法如下: grant select on bas_checkcycle to jdc;这个是整个语句. 语句分析: grant selec ...

  4. Python描述符 (descriptor) 详解

    1.什么是描述符? python描述符是一个“绑定行为”的对象属性,在描述符协议中,它可以通过方法重写属性的访问.这些方法有 __get__(), __set__(), 和__delete__().如 ...

  5. SVN服务端VisualSVN数据转移说明

    两台服务器,进行SVN的迁移: 系统平台:windows server 2008 and windows server 2012 版本库:meishu 源服务器:192.168.0.245 目标服务器 ...

  6. 【PAT】B1052 卖个萌(20 分)

    实在不想写这个题,好费劲,头疼,这是粘的柳婼的代码 ,等我有空再自己用c写吧 #include <iostream> #include <vector> using names ...

  7. tkinter学习系列(三)之Label控件

    目录 目录 前言 (一)基本用法和可选属性 ==1.基本用法== ==2.可选属性== (二)属性的具体使用 ==1.常用属性== ==2.边距与文本对齐方式== ==案例一== ==案例一的效果== ...

  8. Arcgis10.3在添加XY数据时出现问题

    准备通过excel表格(xls格式)中的经纬度生成点数据,但是选择数据的时候报错:连接到数据库失败,常规功能故障,外部表不是预期的格式.如下图所示: 解决方法: 将xls格式的表格另存为csv格式,重 ...

  9. P1141 01迷宫 dfs连通块

    题目描述 有一个仅由数字000与111组成的n×nn \times nn×n格迷宫.若你位于一格0上,那么你可以移动到相邻444格中的某一格111上,同样若你位于一格1上,那么你可以移动到相邻444格 ...

  10. Looper loop

    public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeExcepti ...