首先将完全相同的边的权值累加。考虑这样一种trick:给边确定一个方向,由度数小的连向度数大的,若度数相同则由编号小的连向编号大的。这样显然会得到一个DAG。那么原图的三元环中就一定有且仅有一个点有两条入边了。并且每个点的出度不会超过√m,因为假设一个点连出了x条边那么其所连向的每个点也至少会有x条出边。先将每个点的所有出边按终点编号排序。然后枚举一条边,对其两端点的出边用双指针计算一下其中有多少重复点即可。这样每个环只会被计算一次。复杂度O(mlogm+m√m)。

  没地方交所以懒得写了。

BZOJ5206 JSOI2017原力(三元环计数)的更多相关文章

  1. BZOJ5206: [Jsoi2017]原力

    BZOJ5206: [Jsoi2017]原力 https://lydsy.com/JudgeOnline/problem.php?id=5206 分析: 比较厉害的三元环问题. 设立阈值,当点的度数大 ...

  2. BZOJ5206 [Jsoi2017]原力[根号分治]

    这是一个三元环计数的裸题,只是多了一个颜色的区分和权值的计算罢了. 有一种根号分治的做法(by gxz) 这种复杂度的证明特别显然,思路非常简单,不过带一个log,可以用unordered_map或者 ...

  3. bzoj 5206 [Jsoi2017]原力

    LINK:原力 一张无向图 这道题统计三元环的价值和.有重边但是无自环. 我曾经写过三元环计数 这个和那个题差不太多. 不过有很多额外操作 对于重边问题 我们把所有颜色相同的重边缩在一起 这样的话我们 ...

  4. 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)

    [BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...

  5. Codechef SUMCUBE Sum of Cubes 组合、三元环计数

    传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...

  6. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  7. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  8. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

  9. LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数

    传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...

随机推荐

  1. JavaScript设计模式 - 状态模式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. 8-51单片机ESP8266学习-AT指令(单片机采集温湿度数据通过8266发送给C#TCP客户端显示)

    http://www.cnblogs.com/yangfengwu/p/8785516.html 先写单片机端的程序 先把源码和资料链接放到这里 链接: https://pan.baidu.com/s ...

  3. [03] Spring "Hello World"

    0.写在前面的话 本篇以一个简单的示例,描述了Spring通过容器对于Java类的装载和获取.在以下我们可以看到,有一个Java类Coder,我们全程并没有手动调用new来进行实例化,而是从Sprin ...

  4. JAVA实现用户的权限管理

    一:写在前面 前两天有个同学问我,那个系统不同的用户登陆不同的页面不同,要写很多个页面啊!而每个用户的在系统中拥有不同的权限,可以访问不同的页面是怎么实现的??那低权限的在浏览器输入高权限的人的url ...

  5. 各种工业以太网比较(EtherCAT,EtherNet/IP,ProfiNet,Modbus-TCP,Powerlink)

    EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩 ...

  6. 微软下一代Web前端技术Blazor(C#编译为WebAssembly)

    W3C Web标准化机构在制定下一代的网页技术WebAssembly.目前版本是1.0,主流浏览器的最新版本都已经支持.其特点是浏览器可以执行编译后的二进制程序,不需要像之前的程序,浏览器下载Java ...

  7. Object-Oriented(一)创建对象

    自用备忘笔记 前言 虽然可以使用 Object 和对象字面量创建对象,但是如果要创建大量相似的对象又显得麻烦.为解决这个问题,人们开始使用工厂模式的变种. 工厂模式 function person(n ...

  8. Linux下monit进程管理操作梳理

    Monit对运维人员来说可谓神器,它是一款功能非常丰富的进程.文件.目录和设备的监测工具,用于Unix平台.它可以自动修复那些已经停止运作的程序,特使适合处理那些由于多种原因导致的软件错误.Monit ...

  9. Fedora 19安装mysql

    安装数据库模块 Mysql和Mysql-server#yum install mysql mysql-server 开启mysql服务#systemctl start mysqld.service同样 ...

  10. 【2016.4.6】结对编程 终章 THE END