BZOJ5206 JSOI2017原力(三元环计数)
首先将完全相同的边的权值累加。考虑这样一种trick:给边确定一个方向,由度数小的连向度数大的,若度数相同则由编号小的连向编号大的。这样显然会得到一个DAG。那么原图的三元环中就一定有且仅有一个点有两条入边了。并且每个点的出度不会超过√m,因为假设一个点连出了x条边那么其所连向的每个点也至少会有x条出边。先将每个点的所有出边按终点编号排序。然后枚举一条边,对其两端点的出边用双指针计算一下其中有多少重复点即可。这样每个环只会被计算一次。复杂度O(mlogm+m√m)。
没地方交所以懒得写了。
BZOJ5206 JSOI2017原力(三元环计数)的更多相关文章
- BZOJ5206: [Jsoi2017]原力
BZOJ5206: [Jsoi2017]原力 https://lydsy.com/JudgeOnline/problem.php?id=5206 分析: 比较厉害的三元环问题. 设立阈值,当点的度数大 ...
- BZOJ5206 [Jsoi2017]原力[根号分治]
这是一个三元环计数的裸题,只是多了一个颜色的区分和权值的计算罢了. 有一种根号分治的做法(by gxz) 这种复杂度的证明特别显然,思路非常简单,不过带一个log,可以用unordered_map或者 ...
- bzoj 5206 [Jsoi2017]原力
LINK:原力 一张无向图 这道题统计三元环的价值和.有重边但是无自环. 我曾经写过三元环计数 这个和那个题差不太多. 不过有很多额外操作 对于重边问题 我们把所有颜色相同的重边缩在一起 这样的话我们 ...
- 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...
- Codechef SUMCUBE Sum of Cubes 组合、三元环计数
传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
- BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...
- [hdu 6184 Counting Stars(三元环计数)
hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...
- LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数
传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...
随机推荐
- 快速排序的php实现
再来一个非常高级的排序算法,快速排序...这个算法是很高效的. 快速排序的思路是,找到一个分割点(中枢点 默认是列表第一个值),把原列表分隔成两部分,在分割点左侧的是都比它小的,在它右侧的是都比它大的 ...
- 图解IIS8上解决网站第一次访问慢的处理(转载)
本篇经验以IIS8,Windows Server 2012R2做为案例.IIS8 运行在 Windows Server 2012 and Windows 8 版本以上的平台上.IIS中应用程序池和网站 ...
- 阿里云ECS服务器折腾记(一):小白入门遇到的各类问题
上周日折腾了一次阿里云服务器,被linux的网络问题折腾的够呛.在这里简单做个问题的概要记录,以备忘.题目中说自己是小白,其实也不完全是小白,自己对一些linux的常用命令还是有所了解的,但是对于li ...
- Luogu1344 追查坏牛奶 最小割
题目传送门 题意:给出$N$个节点$M$条边的有向图,边权为$w$,求其最小割与达到最小割的情况下割掉边数的最小值.$N \leq 32,M \leq 1000,w\leq 2 \times 10^6 ...
- angularjs自定义指令Directive
今天学习angularjs自定义指令Directive.Directive是一个非常棒的功能.可以实现我们自义的的功能方法. 下面的例子是演示用户在文本框输入的帐号是否为管理员的帐号"Adm ...
- Intellij Idea 返回上次编辑快捷键设置
由于默认的返回上次编辑快捷键和和笔记本冲突. 需要从新设置快捷键. 找了好久终于找到了. 分别选中Back和Forward后设置新的快捷键即可
- 计算机网络什么是OSI7层模型、TCP/IP4层模型理解
模型图解 应用层 就是最顶层的.通常指的应用程序初始走的协议比如有 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 主要对数据应用层的数据包进行加密 会话层 建立.管理. ...
- Mysql之binlog日志说明及利用binlog日志恢复数据操作记录
众所周知,binlog日志对于mysql数据库来说是十分重要的.在数据丢失的紧急情况下,我们往往会想到用binlog日志功能进行数据恢复(定时全备份+binlog日志恢复增量数据部分),化险为夷! 一 ...
- mysql操作命令梳理(1)-索引
1.创建索引索引的创建可以在CREATE TABLE语句中进行,也可以单独用CREATE INDEX或ALTER TABLE来给表增加索引.以下命令语句分别展示了如何创建主键索引(PRIMARY KE ...
- 前端安全之XSS
XSS定义 XSS, 即为(Cross Site Scripting), 中文名为跨站脚本, 是发生在目标用户的浏览器层面上的,当渲染DOM树的过程成发生了不在预期内执行的JS代码时,就发生了XSS攻 ...