[抄题]:

There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xendbursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

Example:

Input:
[[10,16], [2,8], [1,6], [7,12]] Output:
2 Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

二维数组就写个points.len = 0 就行了,没必要写points[0].len = 0

[思维问题]:

知道是扫描线,忘了怎么写了:更新结尾。必要时+count

[英文数据结构或算法,为什么不用别的数据结构或算法]:

扫描线要先对取件进行排序。

[一句话思路]:

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

为了一把箭能涉及到全部,end选取的是min,需要因地制宜

[一刷]:

  1. 循环过程中要依据end来进行更新

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

以后强制性写test case了:

/*
Input:
[[10,16], [2,8], [1,6], [7,12]]
sort:
Input:
[[1,6], [2,8], [7,12], [10,16]]
end 6 6 12 12
count 1 1 +1=2 2
*/

[复杂度]:Time complexity: O(n) Space complexity: O(1)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

[潜台词] :

class Solution {
public int findMinArrowShots(int[][] points) {
//corner cases
if (points == null || points.length == 0) return 0; //initialization: sort
int count = 1;
Arrays.sort(points, (a, b) -> (a[0] - b[0])); //for loop and get count
int end = points[0][1];
for (int i = 1; i < points.length; i++) {
if (end < points[i][0]) {
count++;
end = points[i][1];
}
else end = Math.min(end, points[i][1]);
} /*
Input:
[[10,16], [2,8], [1,6], [7,12]]
sort:
Input:
[[1,6], [2,8], [7,12], [10,16]]
end 6 6 12 12
count 1 1 +1=2 2
*/ //return
return count;
}
}

452. Minimum Number of Arrows to Burst Balloons扎气球的个数最少的更多相关文章

  1. 贪心:leetcode 870. Advantage Shuffle、134. Gas Station、452. Minimum Number of Arrows to Burst Balloons、316. Remove Duplicate Letters

    870. Advantage Shuffle 思路:A数组的最大值大于B的最大值,就拿这个A跟B比较:如果不大于,就拿最小值跟B比较 A可以改变顺序,但B的顺序不能改变,只能通过容器来获得由大到小的顺 ...

  2. 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)

    [LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...

  3. [LeetCode] 452 Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  4. 452. Minimum Number of Arrows to Burst Balloons——排序+贪心算法

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  5. 452. Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  6. [LeetCode] 452. Minimum Number of Arrows to Burst Balloons 最少箭数爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  7. [LC] 452. Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  8. 【leetcode】452. Minimum Number of Arrows to Burst Balloons

    题目如下: 解题思路:本题可以采用贪心算法.首先把balloons数组按end从小到大排序,然后让第一个arrow的值等于第一个元素的end,依次遍历数组,如果arrow不在当前元素的start到en ...

  9. 452 Minimum Number of Arrows to Burst Balloons 用最少数量的箭引爆气球

    在二维空间中有许多球形的气球.对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标.由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了.开始坐标总是小于结束坐标.平面 ...

随机推荐

  1. Xamarin Android 下拉列表

    <Spinner android:id="@+id/spinner" android:layout_width="wrap_content" androi ...

  2. windows 2008R2系统程序运行提示无法定位程序输入点ucrtbase.terminate

    1.用python写了个脚本,打成exe程序,在一些机器上正常运行,再另外一些机器上运行提示 无法定位程序输入点ucrtbase.terminate 应该是缺少库文件支持 2.网上搜了下.https: ...

  3. C# Windows Service 基础

    Windows Service这一块并不复杂,但是注意事项太多了,网上资料也很凌乱,偶尔自己写也会丢三落四的.所以本文也就产生了,本文不会写复杂的东西,完全以基础应用的需求来写,所以不会对Window ...

  4. EF 指定字段修改

    public virtual void Modify(T model, params string[] ProNames) { DbEntityEntry entry = db.Entry<T& ...

  5. eclipse中svn切换用户

    如果永久保存svn用户账号及密码,再更换svn用户时需要先删除C:\Users\Administrator\AppData\Roaming下的Subversion文件,然后在刷新eclipse中的sv ...

  6. xsyProblem A: 密集子图(graph)

    f[i][S]三进制压缩表示最长路为i,0代表不在该集合,1代表不是最短路为i集合,2代表是最短路集合, 转移枚举i+1集合是那些, 乘以概率即可 预处理保证复杂度 #include<cstdi ...

  7. Sublime Text 3激活

    Sublime Text 3激活方式: 一.修改hosts文件: 1:windows系统:      找到 C:\Windows\System32\drivers\etc\hosts 这个文件,  用 ...

  8. 在线安装TIDB集群

     在线安装TiDB集群 服务器准备 说明:TiDB8需要能够连接外网,以便下载各类安装包 TiDB4非必须,但最好是有一台,因为后续测试Mysql数据同步或者进行性能比较时,都要用到 TiKV最好是采 ...

  9. Jenkins部署报weblogic.deploy.api.tools.deployer.DeployerException: Java heap space

    Jenkins部署报weblogic.deploy.api.tools.deployer.DeployerException: Java heap space异常 解决办法: 在MAVEN_OPTS中 ...

  10. centos7 卸载 jdk

    ################ jdk 的安装 ###########################参考:https://www.cnblogs.com/Dylansuns/p/6974272.h ...