[抄题]:

There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xendbursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

Example:

Input:
[[10,16], [2,8], [1,6], [7,12]] Output:
2 Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

二维数组就写个points.len = 0 就行了,没必要写points[0].len = 0

[思维问题]:

知道是扫描线,忘了怎么写了:更新结尾。必要时+count

[英文数据结构或算法,为什么不用别的数据结构或算法]:

扫描线要先对取件进行排序。

[一句话思路]:

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

为了一把箭能涉及到全部,end选取的是min,需要因地制宜

[一刷]:

  1. 循环过程中要依据end来进行更新

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

以后强制性写test case了:

/*
Input:
[[10,16], [2,8], [1,6], [7,12]]
sort:
Input:
[[1,6], [2,8], [7,12], [10,16]]
end 6 6 12 12
count 1 1 +1=2 2
*/

[复杂度]:Time complexity: O(n) Space complexity: O(1)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

[潜台词] :

class Solution {
public int findMinArrowShots(int[][] points) {
//corner cases
if (points == null || points.length == 0) return 0; //initialization: sort
int count = 1;
Arrays.sort(points, (a, b) -> (a[0] - b[0])); //for loop and get count
int end = points[0][1];
for (int i = 1; i < points.length; i++) {
if (end < points[i][0]) {
count++;
end = points[i][1];
}
else end = Math.min(end, points[i][1]);
} /*
Input:
[[10,16], [2,8], [1,6], [7,12]]
sort:
Input:
[[1,6], [2,8], [7,12], [10,16]]
end 6 6 12 12
count 1 1 +1=2 2
*/ //return
return count;
}
}

452. Minimum Number of Arrows to Burst Balloons扎气球的个数最少的更多相关文章

  1. 贪心:leetcode 870. Advantage Shuffle、134. Gas Station、452. Minimum Number of Arrows to Burst Balloons、316. Remove Duplicate Letters

    870. Advantage Shuffle 思路:A数组的最大值大于B的最大值,就拿这个A跟B比较:如果不大于,就拿最小值跟B比较 A可以改变顺序,但B的顺序不能改变,只能通过容器来获得由大到小的顺 ...

  2. 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)

    [LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...

  3. [LeetCode] 452 Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  4. 452. Minimum Number of Arrows to Burst Balloons——排序+贪心算法

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  5. 452. Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  6. [LeetCode] 452. Minimum Number of Arrows to Burst Balloons 最少箭数爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  7. [LC] 452. Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  8. 【leetcode】452. Minimum Number of Arrows to Burst Balloons

    题目如下: 解题思路:本题可以采用贪心算法.首先把balloons数组按end从小到大排序,然后让第一个arrow的值等于第一个元素的end,依次遍历数组,如果arrow不在当前元素的start到en ...

  9. 452 Minimum Number of Arrows to Burst Balloons 用最少数量的箭引爆气球

    在二维空间中有许多球形的气球.对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标.由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了.开始坐标总是小于结束坐标.平面 ...

随机推荐

  1. 开发一个简单的postgresql extension

      主要是学习如何编写一个简单的pg extension,参考https://severalnines.com/blog/creating-new-modules-using-postgresql-c ...

  2. 服务跟踪sleuth和可视化跟踪工具Zipkin

    一.增加配置 在Order工程中添加配置 <dependency> <groupId>org.springframework.cloud</groupId> < ...

  3. Window离线环境下如何安装pyhanlp

    Hanlp在离线环境下的安装我是没有尝试过的,分享SunJW_2017的这篇文章就是关于如何在离线环境下安装hanlp的.我们可以一起来学习一下! HanLP是一款优秀的中文自然语言处理工具,可以实现 ...

  4. set-----》集合

    1.set 是无序  不重复的序列 2.创建 list = [] dic = {"k1":123} set = {"123","333"}  ...

  5. 在高并发情况nginx的作用

    1 场景一:如图 在单机的情况下例如:单个tomcat 有100w条请求的时候,而默认tomcat支持的并发数量并不能达到要求,所所以单台服务器 扛不住 容易宕机,瘫痪 2 高并发的情况下要让服务器不 ...

  6. CSS的background

    .block{ width: 200px; height: 200px; padding: 25px; background-image:linear-gradient(#58a,#58a) ,lin ...

  7. cookie的中文乱码问题【URL编码解码】

    先搞明白为什么会乱码,为什么要转码: 在tomcat 8 之前,cookie中不能直接存储中文数据.需要将中文数据转码,一般采用URL编码(%E3).在tomcat 8 之后,cookie支持中文数据 ...

  8. java多线程—Runnable、Thread、Callable区别

    多线程编程优点 进程之间不能共享内存,但线程之间共享内存非常容易. 系统创建线程所分配的资源相对创建进程而言,代价非常小. Java中实现多线程有3种方法: 继承Thread类 实现Runnable接 ...

  9. Servlet】(2)有关Servlet实现的几个类:GenericServlet、HttpServlet、ServletConfig、ServletContext

    一.GenericServlet 1.所有的成员方法: 1.在javaWeb项目中: 2.web.xml <?xml version="1.0" encoding=" ...

  10. 堆排序(Heapsort)

    class Program { static void Main(string[] args) { , , , , , ,}; int size = arr.Length; Heapsort(arr, ...