题目大意

求出最少需要丢去多少双靴子才能到达终点。

解法

解法一:

看到数据的范围,非常清楚\(O(n^3)\)能过掉所有的数据,那么我们就果断暴力。


解法二:

比较容易会想到用DP做,我一开始定义\(f[i][j]\)表示前\(i\)个格子,现在穿了第\(j\)双时的最小丢弃数。

那么决策就是每次枚举前面的第\(k\)个格子,和现在穿了第\(p\)双时的最小丢弃数,计算两者之间的距离,在转移。

但是这样无法判断是否要丢弃出最上面的那一双,这样写感觉非常的麻烦。

所以就换了一种状态:\(f[i][j]\)表示前\(i\)个格子用\(j\)双靴子能否走到。

那么我们的边界就是\(f[1][1]=1\)

而转移就非常的简单了:如果当前的状态是true,也就是能用\(j\)双到达\(i\),那么就枚举下一双\(k\),如果满足所有题目中的约束条件,那么就转移。

这样的复杂度看似是\(O(n^4)\),但是呢?我们中间有很多不会访问到的状态,一双鞋子能够更新的答案的个数是很少的。


解法三:

看到有大佬用了一维就做了出了答案,非常的好奇,看了一下,但是觉得这样思路是一样的,就是压缩了一维状态。我谈一下我的理解:\(f[i]\)表示前\(i\)个格子能否被达到,那么我们就用\(j\)来更新这个\(f\)数组,如果能够达到,而且满足题目中的约束条件,那么就说明就可以用第\(j\)双靴子来更新后面的答案,那么我们第一次更新到终点的答案就是我们的要求求解的答案。


ac代码

# include <cstdio>
# include <cstring>
# include <algorithm>
# include <ctype.h>
# include <iostream>
# include <cmath>
# define LL (long long)
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x7f7f7f7f)
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
using namespace std;
inline int gi(){
    int w=0,x=0;char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
# define N (255)
int n,b;
int dep[N],d[N],s[N];
bool f[N][N];
int main(){
    n=gi(),b=gi();
    for (int i=1;i<=n;i++) dep[i]=gi();
    for (int i=1;i<=b;i++) s[i]=gi(),d[i]=gi();
    ms(f,0); f[1][1]=1;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=b;j++)
            if (f[i][j])
                for (int k=j;k<=b;k++)
                    if (dep[i]<=s[k])
                        for (int q=i+1;q<=min(n,i+d[k]);q++)
                            if (s[k]>=dep[q]) f[q][k]=1;
    for(int i=1;i<=b;i++)
        if (f[n][i]){
            printf("%d\n",i-1);
            return 0;
        }
    return 0;
}

[luogu4265][USACO18FEB]Snow Boots silver的更多相关文章

  1. 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G

    题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...

  2. [USACO18FEB]Snow Boots S

    提供一种无脑DP做法 题目中大概有这么些东西:位置,穿鞋,跑路 数据小,那么暴力开数组暴力DP吧 设dp[i][j]表示穿着鞋子j,到达位置i是否可行 无脑转移 枚举位置,正在穿哪双鞋,换成哪双走出去 ...

  3. [USACO18FEB] Snow Boots G (离线+并查集)

    题目大意:略 网上各种神仙做法,本蒟蒻只想了一个离线+并查集的做法 对所有靴子按最大能踩的深度从大到小排序,再把所有地砖按照积雪深度从大到小排序 一个小贪心思想,我们肯定是在 连续不能踩的地砖之前 的 ...

  4. BZOJ 5194--[Usaco2018 Feb]Snow Boots(STL)

    5194: [Usaco2018 Feb]Snow Boots Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 81  Solved: 61[Submi ...

  5. BZOJ5194: [Usaco2018 Feb]Snow Boots(排序&set)(可线段树优化)

    5194: [Usaco2018 Feb]Snow Boots Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 102  Solved: 79[Subm ...

  6. 2019 GDUT Rating Contest II : Problem G. Snow Boots

    题面: G. Snow Boots Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  7. 【BZOJ5194】Snow Boots

    [原题题面]传送门 [简化题意] 给定一个长度为n的序列. 有m次询问,每次询问给定两个数si,di.你一开始站在0,每次你可以走不超过di,但你到达的位置的数不能超过si.问能否走到n+1. n,m ...

  8. luogu4269 Snow Boots G (并查集)

    对于某个靴子,如果0代表某个格能走,1代表不能走,那么只要连续的1的个数的最大值>=靴子的步长,那这个靴子就不能用. 那么只要对靴子和格子都按深度排个序,然后从大到小来扫一遍(靴子越来越浅,能走 ...

  9. Bzoj[Usaco2018 Feb]5194 Snow Boots(线段树)

    Description 到冬天了,这意味着下雪了!从农舍到牛棚的路上有N块地砖,方便起见编号为1…N,第i块地砖上积了fi英尺的雪 .在Farmer John的农舍的地窖中,总共有B双靴子,编号为1… ...

随机推荐

  1. 【强化学习】python 实现 q-learning 例一

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10134018.html 问题情境 -o---T# T 就是宝藏的位置, o 是探索者的位置 ...

  2. P4099 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...

  3. Qt Creator 中,如何更改h,cpp,ui的文件并不让ui失效

    这个星期在使用qt,碰到一个很蛋疼的问题:创建对话框的时候,不小心输错了名字.而且是在很迟才发现的.这个时候对话框都已经布局差不多了,为了改名字,碰到更蛋疼的问题,改了名字后就无法使用转到槽的功能了. ...

  4. Ext JS 4 的类系统

    前言 我们知道,JavaScript中没有真正的类,它是一种面向原型的语言 .这种语言一个强大的特性就是灵活,实现一个功能可以有很多不同的方式,用不同的编码风格和技巧.但随之也带来了代码的不可预测和难 ...

  5. Puppet常识梳理

    Puppet简单介绍 1)puppet是一种Linux/Unix平台下的集中配置管理系统,使用自有的puppet描述语言,可管理配置文件.用户.cron任务.软件包.系统服务等.puppet把这些系统 ...

  6. webpack详细配置解析

    阅读本文之前,先看下面这个webpack的配置文件,如果每一项你都懂,那本文能带给你的收获也许就比较有限,你可以快速浏览或直接跳过:如果你和十天前的我一样,对很多选项存在着疑惑,那花一段时间慢慢阅读本 ...

  7. 安装Visual Studio开发平台

    1.找一个VS2013的安装包,下载到D盘上,勾选相应的选项安装. 安装的过程很漫长,至少需要一个小时. 2.安装已完成,启动. . 3.登录. \ 4启动VS2013. 5.新建c#类库 6.输入代 ...

  8. js 时间戳转换为日期格式

     //将1525854409000类型的时间转换成“yyyy-MM-dd”或“yyyy-MM-dd hh:mm:ss”   //info.birthday是后台获取到的Date类型的出生日期数据, / ...

  9. 第三个Sprint冲刺第4天

    成员:罗凯旋.罗林杰.吴伟锋.黎文衷 讨论内容:各成员汇报各自完成的情况.

  10. 小学四则运算APP 第一个冲刺阶段 第六天

    团队成员:陈淑筠.杨家安.陈曦 团队选题:小学四则运算APP 第一次冲刺阶段时间:11.17~11.27 本次发布的是重新排列整齐ResultActivity的布局代码activity_result. ...