题目大意

求出最少需要丢去多少双靴子才能到达终点。

解法

解法一:

看到数据的范围,非常清楚\(O(n^3)\)能过掉所有的数据,那么我们就果断暴力。


解法二:

比较容易会想到用DP做,我一开始定义\(f[i][j]\)表示前\(i\)个格子,现在穿了第\(j\)双时的最小丢弃数。

那么决策就是每次枚举前面的第\(k\)个格子,和现在穿了第\(p\)双时的最小丢弃数,计算两者之间的距离,在转移。

但是这样无法判断是否要丢弃出最上面的那一双,这样写感觉非常的麻烦。

所以就换了一种状态:\(f[i][j]\)表示前\(i\)个格子用\(j\)双靴子能否走到。

那么我们的边界就是\(f[1][1]=1\)

而转移就非常的简单了:如果当前的状态是true,也就是能用\(j\)双到达\(i\),那么就枚举下一双\(k\),如果满足所有题目中的约束条件,那么就转移。

这样的复杂度看似是\(O(n^4)\),但是呢?我们中间有很多不会访问到的状态,一双鞋子能够更新的答案的个数是很少的。


解法三:

看到有大佬用了一维就做了出了答案,非常的好奇,看了一下,但是觉得这样思路是一样的,就是压缩了一维状态。我谈一下我的理解:\(f[i]\)表示前\(i\)个格子能否被达到,那么我们就用\(j\)来更新这个\(f\)数组,如果能够达到,而且满足题目中的约束条件,那么就说明就可以用第\(j\)双靴子来更新后面的答案,那么我们第一次更新到终点的答案就是我们的要求求解的答案。


ac代码

# include <cstdio>
# include <cstring>
# include <algorithm>
# include <ctype.h>
# include <iostream>
# include <cmath>
# define LL (long long)
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x7f7f7f7f)
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
using namespace std;
inline int gi(){
    int w=0,x=0;char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
# define N (255)
int n,b;
int dep[N],d[N],s[N];
bool f[N][N];
int main(){
    n=gi(),b=gi();
    for (int i=1;i<=n;i++) dep[i]=gi();
    for (int i=1;i<=b;i++) s[i]=gi(),d[i]=gi();
    ms(f,0); f[1][1]=1;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=b;j++)
            if (f[i][j])
                for (int k=j;k<=b;k++)
                    if (dep[i]<=s[k])
                        for (int q=i+1;q<=min(n,i+d[k]);q++)
                            if (s[k]>=dep[q]) f[q][k]=1;
    for(int i=1;i<=b;i++)
        if (f[n][i]){
            printf("%d\n",i-1);
            return 0;
        }
    return 0;
}

[luogu4265][USACO18FEB]Snow Boots silver的更多相关文章

  1. 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G

    题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...

  2. [USACO18FEB]Snow Boots S

    提供一种无脑DP做法 题目中大概有这么些东西:位置,穿鞋,跑路 数据小,那么暴力开数组暴力DP吧 设dp[i][j]表示穿着鞋子j,到达位置i是否可行 无脑转移 枚举位置,正在穿哪双鞋,换成哪双走出去 ...

  3. [USACO18FEB] Snow Boots G (离线+并查集)

    题目大意:略 网上各种神仙做法,本蒟蒻只想了一个离线+并查集的做法 对所有靴子按最大能踩的深度从大到小排序,再把所有地砖按照积雪深度从大到小排序 一个小贪心思想,我们肯定是在 连续不能踩的地砖之前 的 ...

  4. BZOJ 5194--[Usaco2018 Feb]Snow Boots(STL)

    5194: [Usaco2018 Feb]Snow Boots Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 81  Solved: 61[Submi ...

  5. BZOJ5194: [Usaco2018 Feb]Snow Boots(排序&set)(可线段树优化)

    5194: [Usaco2018 Feb]Snow Boots Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 102  Solved: 79[Subm ...

  6. 2019 GDUT Rating Contest II : Problem G. Snow Boots

    题面: G. Snow Boots Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  7. 【BZOJ5194】Snow Boots

    [原题题面]传送门 [简化题意] 给定一个长度为n的序列. 有m次询问,每次询问给定两个数si,di.你一开始站在0,每次你可以走不超过di,但你到达的位置的数不能超过si.问能否走到n+1. n,m ...

  8. luogu4269 Snow Boots G (并查集)

    对于某个靴子,如果0代表某个格能走,1代表不能走,那么只要连续的1的个数的最大值>=靴子的步长,那这个靴子就不能用. 那么只要对靴子和格子都按深度排个序,然后从大到小来扫一遍(靴子越来越浅,能走 ...

  9. Bzoj[Usaco2018 Feb]5194 Snow Boots(线段树)

    Description 到冬天了,这意味着下雪了!从农舍到牛棚的路上有N块地砖,方便起见编号为1…N,第i块地砖上积了fi英尺的雪 .在Farmer John的农舍的地窖中,总共有B双靴子,编号为1… ...

随机推荐

  1. Luogu T29912 fuck

    这是QZEZ的Luogu团队中的一道难得的水题,题面和数据都是CJJ dalao出的,然后我就没有太看懂题意. 也是一道经典的割点好题,但需要一定的思维. 首先对于题意,它只需要得到切断的作用就可以了 ...

  2. Luogu P2261 [CQOI2007]余数求和

    最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...

  3. Java开源博客My-Blog之mysql容器重复初始化的严重bug修复过程

    写在前面的话 <Docker+SpringBoot+Mybatis+thymeleaf的Java博客系统开源啦> <Java开源博客My-Blog之docker容器组件化修改> ...

  4. cgroup.conf系统初始配置

    # Slurm cgroup support configuration file # # See man slurm.conf and man cgroup.conf for further # i ...

  5. json模块 & pickle模块

    之前学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所 ...

  6. Python - 列表解析式

    列表解析——用来动态地创建列表 [expr for iter_var in iterable if cond_expr] 例子一: map(lambda x: x**2, range(6)) [0, ...

  7. if...else 小练习

    # 需求:猜年龄,可以让用户最多猜三次 age = 60 for i in range(3): guess = int(input("Input Age: ")) if guess ...

  8. 分布式监控系统Zabbix-批量添加聚合图形

    之前部署了Zabbix(3.4.4版本)监控环境,由于主机比较多,分的主机组也比较多,添加聚合图形比较麻烦,故采用python脚本进行批量添加聚合图形.脚本下载地址:https://pan.baidu ...

  9. Linux下通过受限bash创建指定权限的账号

    在日常业务运维中,有时为了配合解决问题,需要给非运维人员开通系统账号,用于查询日志或代码.通常为了系统安全或避免不必要的误操作等目的,会将账号权限降至最低.下面介绍下在Linux下通过受限bash创建 ...

  10. D. Too Easy Problems

    链接 [http://codeforces.com/group/1EzrFFyOc0/contest/913/problem/D] 题意 给你n个题目,考试时间T,对于每个问题都有一个ai,以及解决所 ...