https://pintia.cn/problem-sets/994805342720868352/problems/994805346063728640

There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

  • (1) Every node is either red or black.
  • (2) The root is black.
  • (3) Every leaf (NULL) is black.
  • (4) If a node is red, then both its children are black.
  • (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.

Figure 1 Figure 2 Figure 3

For each given binary search tree, you are supposed to tell if it is a legal red-black tree.

Input Specification:

Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.

Output Specification:

For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.

Sample Input:

3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17

Sample Output:

Yes
No
No

代码:

#include <bits/stdc++.h>
using namespace std; const int maxn = 500;
int T, n; int preorder[maxn]; struct Node {
int child[2];
int blackCnt;
int value;
int color;
}s[maxn]; int root, sz, ans; int AddNode(int valAndcol) {
sz ++;
s[sz].value = abs(valAndcol);
s[sz].color = valAndcol >= 0;
return sz;
} void Build(int L, int R, int father, bool direction) {
int l1 = -1, r1 = -1;
int l2 = -1, r2 = -1; for(int i = L + 1; i <= R; i ++) {
if(abs(preorder[i]) < abs(preorder[L])) {
l1 = L + 1, r1 = i;
} else if(abs(preorder[i]) == abs(preorder[L])) {
ans = 0;
return;
} else {
if(l2 == -1) l2 = i, r2 = R;
}
} if(l1 != -1) {
for(int i = l1; i <= r1; i ++) {
if(abs(preorder[i]) >= abs(preorder[L])) {
ans = 0;
return;
}
}
} if(l2 != -1) {
for(int i = l2; i <= r2; i ++) {
if(abs(preorder[i]) <= abs(preorder[L])) {
ans = 0;
return;
}
}
} // left: [l1, r1], right: [l2, r2]
int currentNode = AddNode(preorder[L]);
father != -1 ? s[father].child[direction] = currentNode : root = currentNode;
if(l1 != -1) Build(l1, r1, currentNode, 0);
if(ans == 0) return;
if(l2 != -1) Build(l2, r2, currentNode, 1);
} void Initialize() {
ans = 1;
root = -1;
sz = 0;
for(int i = 0; i < maxn; i ++) {
s[i].child[0] = s[i].child[1] = s[i].color = -1;
s[i].blackCnt = s[i].value = 0;
}
} void dfs(int x) {
for(int i = 0; i < 2; i ++) {
if(s[x].child[i] != -1) {
dfs(s[x].child[i]);
if(ans == 0) return;
}
} if(s[x].child[0] != -1 &&
s[x].child[1] != -1 &&
s[s[x].child[0]].blackCnt != s[s[x].child[1]].blackCnt) {
ans = 0;
return;
} if(s[x].child[0] != -1) s[x].blackCnt = s[s[x].child[0]].blackCnt;
if(s[x].child[1] != -1) s[x].blackCnt = s[s[x].child[1]].blackCnt;
s[x].blackCnt += s[x].color;
} int main() {
scanf("%d", &T);
while(T --) {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
scanf("%d", &preorder[i]);
} Initialize();
Build(1, n, -1, -1); /*
// Debug Information:
for(int i = 1; i <= sz; i ++) {
printf("Id: %d, L: %d, R: %d, val: %d, col: %d\n", i, s[i].child[0], s[i].child[1], s[i].value, s[i].color);
}
*/ // (1) Every node is either red or black. // (2) The root is black.
if(!s[root].color) ans = 0; // (3) Every leaf (NULL) is black. // (4) If a node is red, then both its children are black.
for(int i = 1; i <= sz; i ++) {
if(!s[i].color) {
if(s[i].child[0] != -1 && !s[s[i].child[0]].color) ans = 0;
if(s[i].child[1] != -1 && !s[s[i].child[1]].color) ans = 0;
}
} for(int i = 1; i <= n; i ++) {
for(int j = 0; j < 2; j ++) {
if(s[i].child[j] == -1) {
s[i].child[j] = AddNode(0);
}
}
} // (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
dfs(root); printf("%s\n", ans ? "Yes" : "No");
}
return 0;
}

 

PAT 甲级 1135 Is It A Red-Black Tree的更多相关文章

  1. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  2. PAT 甲级1135. Is It A Red-Black Tree (30)

    链接:1135. Is It A Red-Black Tree (30) 红黑树的性质: (1) Every node is either red or black. (2) The root is ...

  3. pat 甲级 1135. Is It A Red-Black Tree (30)

    1135. Is It A Red-Black Tree (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  4. PAT甲级——1135 Is It A Red-Black Tree (30 分)

    我先在CSDN上面发表了同样的文章,见https://blog.csdn.net/weixin_44385565/article/details/88863693 排版比博客园要好一些.. 1135 ...

  5. PAT甲级1135 Is It A Red-Black Tree?【dfs】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805346063728640 题意: 给定一棵二叉搜索树的先序遍历结 ...

  6. 【PAT 甲级】1151 LCA in a Binary Tree (30 分)

    题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...

  7. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

  8. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...

  9. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

随机推荐

  1. Android中长度单位和边距

    Android表示单位长度的方式通常有三种表示方式. 距离单位☞px:表示屏幕实际的象素.例如,320*480的屏幕在横向有320个象素,在纵向有480个象素 距离单位☞dp:dp = dpi     ...

  2. 装饰者模式vs适配器模式

    http://www.cnblogs.com/tekkaman/p/3275077.html 1.关于新职责:适配器也可以在转换时增加新的职责,但主要目的不在此.装饰者模式主要是给被装饰者增加新职责的 ...

  3. Ros使用Arduino 2 使用rosserial创建一个publisher

    1 启动arduino 将arduino开发板连接到电脑的usb口,在arduino IDE中进行设置. 选择Tools->Board,选择你所使用的arduino开发板的类型,所使用的ardu ...

  4. 在web.xml中通过contextConfigLocation配置spring

    <context-param>         <param-name>contextConfigLocation</param-name>         < ...

  5. ethereum/EIPs-158 State clearing 被EIP-161取代

    eip title author type category status created superseded-by 158 State clearing Vitalik Buterin Stand ...

  6. oracle批量插入数据(测试)

    做数据库开发或管理的人经常要创建大量的测试数据,动不动就需要上万条,如果一条一条的录入,那会浪费大量的时间,本文介绍了Oracle中如何通过一条 SQL快速生成大量的测试数据的方法.产生测试数据的SQ ...

  7. Python-2.7 : 编码问题及encode与decode

    普通的字符串在py2.7中都是以ASCII编码的,例如str=“abc”,若含有中文则会以gbk或者gb2312编码(GB2312是中国规定的汉字编码,也可以说是简体中文的字符集编码;GBK 是 GB ...

  8. AliOS-Things linkkitapp解读

    app-example-linkkitapp是AliOS-Things提供的设备联网并且和阿里云IOT平台数据交互的一个示例程序: 1:application_start()程序在app_entry. ...

  9. 高显卡安装 低版本的ubuntu系统导致hdmi线不能用

  10. GIT 安装、创建版本库

    在Linux上安装Git 首先,你可以试着输入git,看看系统有没有安装Git: $ git The program 'git' is currently not installed. You can ...