PAT 甲级 1135 Is It A Red-Black Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805346063728640
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
![]() |
![]() |
![]() |
|---|---|---|
| Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:
3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
代码:
#include <bits/stdc++.h>
using namespace std; const int maxn = 500;
int T, n; int preorder[maxn]; struct Node {
int child[2];
int blackCnt;
int value;
int color;
}s[maxn]; int root, sz, ans; int AddNode(int valAndcol) {
sz ++;
s[sz].value = abs(valAndcol);
s[sz].color = valAndcol >= 0;
return sz;
} void Build(int L, int R, int father, bool direction) {
int l1 = -1, r1 = -1;
int l2 = -1, r2 = -1; for(int i = L + 1; i <= R; i ++) {
if(abs(preorder[i]) < abs(preorder[L])) {
l1 = L + 1, r1 = i;
} else if(abs(preorder[i]) == abs(preorder[L])) {
ans = 0;
return;
} else {
if(l2 == -1) l2 = i, r2 = R;
}
} if(l1 != -1) {
for(int i = l1; i <= r1; i ++) {
if(abs(preorder[i]) >= abs(preorder[L])) {
ans = 0;
return;
}
}
} if(l2 != -1) {
for(int i = l2; i <= r2; i ++) {
if(abs(preorder[i]) <= abs(preorder[L])) {
ans = 0;
return;
}
}
} // left: [l1, r1], right: [l2, r2]
int currentNode = AddNode(preorder[L]);
father != -1 ? s[father].child[direction] = currentNode : root = currentNode;
if(l1 != -1) Build(l1, r1, currentNode, 0);
if(ans == 0) return;
if(l2 != -1) Build(l2, r2, currentNode, 1);
} void Initialize() {
ans = 1;
root = -1;
sz = 0;
for(int i = 0; i < maxn; i ++) {
s[i].child[0] = s[i].child[1] = s[i].color = -1;
s[i].blackCnt = s[i].value = 0;
}
} void dfs(int x) {
for(int i = 0; i < 2; i ++) {
if(s[x].child[i] != -1) {
dfs(s[x].child[i]);
if(ans == 0) return;
}
} if(s[x].child[0] != -1 &&
s[x].child[1] != -1 &&
s[s[x].child[0]].blackCnt != s[s[x].child[1]].blackCnt) {
ans = 0;
return;
} if(s[x].child[0] != -1) s[x].blackCnt = s[s[x].child[0]].blackCnt;
if(s[x].child[1] != -1) s[x].blackCnt = s[s[x].child[1]].blackCnt;
s[x].blackCnt += s[x].color;
} int main() {
scanf("%d", &T);
while(T --) {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
scanf("%d", &preorder[i]);
} Initialize();
Build(1, n, -1, -1); /*
// Debug Information:
for(int i = 1; i <= sz; i ++) {
printf("Id: %d, L: %d, R: %d, val: %d, col: %d\n", i, s[i].child[0], s[i].child[1], s[i].value, s[i].color);
}
*/ // (1) Every node is either red or black. // (2) The root is black.
if(!s[root].color) ans = 0; // (3) Every leaf (NULL) is black. // (4) If a node is red, then both its children are black.
for(int i = 1; i <= sz; i ++) {
if(!s[i].color) {
if(s[i].child[0] != -1 && !s[s[i].child[0]].color) ans = 0;
if(s[i].child[1] != -1 && !s[s[i].child[1]].color) ans = 0;
}
} for(int i = 1; i <= n; i ++) {
for(int j = 0; j < 2; j ++) {
if(s[i].child[j] == -1) {
s[i].child[j] = AddNode(0);
}
}
} // (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
dfs(root); printf("%s\n", ans ? "Yes" : "No");
}
return 0;
}
PAT 甲级 1135 Is It A Red-Black Tree的更多相关文章
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- PAT 甲级1135. Is It A Red-Black Tree (30)
链接:1135. Is It A Red-Black Tree (30) 红黑树的性质: (1) Every node is either red or black. (2) The root is ...
- pat 甲级 1135. Is It A Red-Black Tree (30)
1135. Is It A Red-Black Tree (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
- PAT甲级——1135 Is It A Red-Black Tree (30 分)
我先在CSDN上面发表了同样的文章,见https://blog.csdn.net/weixin_44385565/article/details/88863693 排版比博客园要好一些.. 1135 ...
- PAT甲级1135 Is It A Red-Black Tree?【dfs】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805346063728640 题意: 给定一棵二叉搜索树的先序遍历结 ...
- 【PAT 甲级】1151 LCA in a Binary Tree (30 分)
题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT 甲级 1043 Is It a Binary Search Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
随机推荐
- C#の----Func,Action,predicate在WPF中的应用
首先介绍下,winform中可以用this.invoke来实现:wpf中要使用调度器Control.Despite.invoke: (Action)(()=> { })和 new Action ...
- Linux基础第六课——grep|awk|sort|uniq
管道符 | 前面的输出作为后面的输入 grep 可以理解为正则表达式 grep [参数] 文件名 -c 打印符合要求的行数 -v 打印不符合要求的行 -n 在输出符合要求的行的同时连同行号一起输出 - ...
- swift protocol 见证容器 虚函数表 与 动态派发
一.测试代码: //protocol DiceGameDelegate: AnyObject { //} // //@objc protocol OcProtocol{ // @objc fun ...
- java list 排序,建议收藏的排序方法
每天学习一点点 编程PDF电子书.视频教程免费下载:http://www.shitanlife.com/code public static void main(String[] args) { ...
- Windows下面安装并运行composer的步骤
在composer官网下载得到:https://getcomposer.org/download/ Composer-Setup.exe 安装时注意:安装过程中,会提示你选择php安装目录.一直到ph ...
- (转)web.xml中的contextConfigLocation在spring中的作用
(转)web.xml中的contextConfigLocation在spring中的作用 一.Spring如何使用多个xml配置文件 1.在web.xml中定义contextConfigLocat ...
- docker启动失败(can't create unix socket /var/run/docker.sock: is a directory)
现象 # service docker start Redirecting to /bin/systemctl start docker.service Job for docker.service ...
- leetcode 206. Reverse Linked List(剑指offer16)、
206. Reverse Linked List 之前在牛客上的写法: 错误代码: class Solution { public: ListNode* ReverseList(ListNode* p ...
- QT QLabelde 使用技巧总结
QLabel提供了一个文本或图像的显示,没有提供用户交互功能. 一个QLabel可以包含以下任意内容类型: 内容 设置 纯文本 使用setText()设置一个QString 富文本 使用setText ...
- Android学习之基础知识五—RecyclerView(滚动控件)
RecyclerView可以说是增强版的ListView,不仅具有ListVIew的效果,还弥补许多ListView的不足. 一.RecyclerView的基本用法 与百分比布局类似,Recycler ...


