思路

做这题先要知道一个性质,

\[d_{ij}=\sum_{x|i}\sum_{y|j}[(x,y)=1]
\]

然后上莫比乌斯反演颓柿子就好了

\[\begin{align}&\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[(x,y)=1]\\=&\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}\sum_{d|(x,y)}\mu(d)\\=&\sum_{i=1}^n\sum_{j=1}^m\sum_d^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{i}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{j}{d}\rfloor}1\\=&\sum_d^{min(n,m)}\mu(d)\sum_{i=1}^n\sum_{x=1}^{\lfloor\frac{i}{d}\rfloor}\sum_{j=1}^m\sum_{y=1}^{\lfloor\frac{j}{d}\rfloor}1\\=&\sum_d^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{xd}\rfloor\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor\\=&\sum_d^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{\lfloor \frac{n}{d}\rfloor}{x}\rfloor\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{\lfloor \frac{m}{d} \rfloor}{y}\rfloor\end{align}\\
\]

后面的部分,预处理一个\(\sum_{i=1}^n \lfloor \frac{n}{i} \rfloor\)就好了,前面上一个整除分块

代码

#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int isprime[50010],mu[50010],cnt,iprime[50010],n,m,t;
long long sum[50010];
void prime(int n){
mu[1]=1;
isprime[1]=true;
for(int i=2;i<=n;i++){
if(!isprime[i]){
iprime[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[i*iprime[j]]=true;
mu[i*iprime[j]]=-mu[i];
if(i%iprime[j]==0){
mu[i*iprime[j]]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
mu[i]+=mu[i-1];
}
void pre(int n){
for(int i=1;i<=n;i++){
long long ans=0;
for(int l=1,r;l<=i;l=r+1){
r=i/(i/l);
ans=ans+1LL*(r-l+1)*(i/l);
}
sum[i]=ans;
}
}
int main(){
scanf("%d",&t);
prime(50000);
pre(50000);
// printf("ok\n");
while(t--){
scanf("%d %d",&n,&m);
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
// printf("l=%d\n",l);
ans=ans+1LL*(mu[r]-mu[l-1])*sum[n/l]*sum[m/l];
}
printf("%lld\n",ans);
}
return 0;
}

P3327 [SDOI2015]约数个数和的更多相关文章

  1. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  2. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  3. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  4. Luogu P3327 [SDOI2015]约数个数和

    又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...

  5. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  6. 并不对劲的bzoj3994:loj2185:p3327[SDOI2015]约数个数和

    题目大意 设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sum^n_{i=1}\sum^m_{j=1}d(i*j)$ 题解 假设\( ...

  7. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  8. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  9. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...

随机推荐

  1. 18、MySQL

    ++主键(primary key) 能够唯一标识表中某一行的属性或属性组++.==一个表只能有一个主键==,但可以有多个候选索引.==主键可以保证记录的唯一==和==主键域非空==,数据库管理系统对于 ...

  2. Angel - MemoryDataBlock - angel.task.estimize.sample.number

    angel.task.estimize.sample.number val validData = new MemoryDataBlock[LabeledData](isVali) trainData ...

  3. 关于Could not load driverClass ${jdbc.driverClassName}问题解决方案

    在spring与mybatis3整合时一直遇到Could not load driverClass ${jdbc.driverClassName}报错如果将 ${jdbc.driverClassNam ...

  4. 微信小程序开发笔记02

    今天学习了微信小程序开发用到的语言,wxml与wxss语言基本语法与html和css基本语法相似,学习起来相对简单.在小程序主要的语言是js(javascript,跟准确的说是jqery) ,由于这种 ...

  5. js的简单介绍

    1.js的介绍 js全称叫javascript,但不是java,他是一门前台语言,而java是后台语言. js的作者是布兰登艾奇. 前台语言:运行在客户端的 后台语言:跟数据库有关的. 2.能干什么? ...

  6. 终于等到你!WebOptimizer - A bundler and minifier for ASP.NET Core

    迷人的 ASP.NET Core 有一个美中不足之处,自从一开始接触它到现在,我就一直不喜欢,一直想找到替代品,甚至想过自己实现一个,它就是 BundlerMinifier . 昨天面对 bundle ...

  7. ping不通,配置dns

    vim /etc/resolv.conf nameserver 119.29.29.29 nameserver 182.254.116.116 nameserver 8.8.8.8

  8. c 语言 随机数选取6个数 一定范围内

    种子来源 定时器/****************** 自动筛选种子 dat 目标种子 ************/ #define max 7 //随机生成最大的数为7 #define min 1 / ...

  9. ES6中Set 和 Map用法

    JS中Set与Map用法 一.Set 1.基本用法 ES6 提供了新的数据结构 Set.它类似于数组,但是成员的值都是唯一的,没有重复的值. Set 本身是一个构造函数,用来生成 Set 数据结构. ...

  10. qt ShaderEffect上的ShaderToy

    https://zhuanlan.zhihu.com/p/38942460 发现这个挺好玩,有空学习一下