百度百科:瓶颈生成树

瓶颈生成树 :无向图G的一颗瓶颈生成树是这样的一颗生成树,它最大的边权值在G的所有生成树中是最小的。瓶颈生成树的值为T中最大权值边的权。

无向图的最小生成树一定是瓶颈生成树,但瓶颈生成树不一定是最小生成树。(最小瓶颈生成树==最小生成树)

命题:无向图的最小生成树一定是瓶颈生成树。

证明:可以采用反证法予以证明。
假设最小生成树不是瓶颈树,设最小生成树T的最大权边为e,则存在一棵瓶颈树Tb,其所有的边的权值小于w(e)。删除T中的e,形成两棵数T', T'',用Tb中连接T', T''的边连接这两棵树,得到新的生成树,其权值小于T,与T是最小生成树矛盾。[1-2] 

命题:瓶颈生成树不一定是最小生成树。

下面是一个反例:
 

由红色边组成的生成树是瓶颈树,但并非最小生成树。

POJ 2395 Out of Hay

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15380   Accepted: 6008

Description

The cows have run out of hay, a horrible event that must be remedied immediately. Bessie intends to visit the other farms to survey their hay situation. There are N (2 <= N <= 2,000) farms (numbered 1..N); Bessie starts at Farm 1. She'll traverse some or all of the M (1 <= M <= 10,000) two-way roads whose length does not exceed 1,000,000,000 that connect the farms. Some farms may be multiply connected with different length roads. All farms are connected one way or another to Farm 1.

Bessie is trying to decide how large a waterskin she will need. She knows that she needs one ounce of water for each unit of length of a road. Since she can get more water at each farm, she's only concerned about the length of the longest road. Of course, she plans her route between farms such that she minimizes the amount of water she must carry.

Help Bessie know the largest amount of water she will ever have to carry: what is the length of longest road she'll have to travel between any two farms, presuming she chooses routes that minimize that number? This means, of course, that she might backtrack over a road in order to minimize the length of the longest road she'll have to traverse.

Input

* Line 1: Two space-separated integers, N and M.

* Lines 2..1+M: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, describing a road from A_i to B_i of length L_i.

Output

* Line 1: A single integer that is the length of the longest road required to be traversed.

Sample Input

3 3
1 2 23
2 3 1000
1 3 43

Sample Output

43

Hint

OUTPUT DETAILS:

In order to reach farm 2, Bessie travels along a road of length 23. To reach farm 3, Bessie travels along a road of length 43. With capacity 43, she can travel along these roads provided that she refills her tank to maximum capacity before she starts down a road.

题意:给出n个农场和m条边,农场按1到n编号,现在有一人要从编号为1的农场出发到其他的农场去,求在这途中他最多需要携带的水的重量,注意他每到达一个农场,可以对水进行补给,且要使总共的路径长度最小。就是求最小生成树中的最长边。kruskal算法即可解决。
 #define N 2005
#define M 10005
#include<iostream>
using namespace std;
#include<cstdio>
#include<algorithm>
struct Edge{
int u,v,w;
bool operator <(Edge K)
const{return w<K.w;}
}edge[M];
int mst=,n,m,father[N],ans;
void input()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
}
int find(int x)
{
return(father[x]==x?x:father[x]=find(father[x]));
}
void kruskal()
{
for(int i=;i<=n;++i)
father[i]=i;
sort(edge+,edge+m+);
for(int i=;i<=m;++i)
{
int f1=find(edge[i].u);
int f2=find(edge[i].v);
if(f1==f2) continue;
father[f2]=f1;
mst++;
if(mst==n-)
{
ans=edge[i].w;
return;
}
}
}
int main()
{
input();
kruskal();
printf("%d",ans);
return ;
}

瓶颈生成树与最小生成树 POJ 2395 Out of Hay的更多相关文章

  1. POJ 2395 Out of Hay(最小生成树中的最大长度)

    POJ 2395 Out of Hay 本题是要求最小生成树中的最大长度, 无向边,初始化es结构体时要加倍,别忘了init(n)并查集的初始化,同时要单独标记使用过的边数, 判断ans==n-1时, ...

  2. POJ 2395 Out of Hay 草荒 (MST,Kruscal,最小瓶颈树)

    题意:Bessie要从牧场1到达各大牧场去,他从不关心他要走多远,他只关心他的水袋够不够水,他可以在任意牧场补给水,问他走完各大牧场,最多的一次需要多少带多少单位的水? 思路:其实就是要让所带的水尽量 ...

  3. poj - 2377 Bad Cowtractors&&poj 2395 Out of Hay(最大生成树)

    http://poj.org/problem?id=2377 bessie要为FJ的N个农场联网,给出M条联通的线路,每条线路需要花费C,因为意识到FJ不想付钱,所以bsssie想把工作做的很糟糕,她 ...

  4. poj 2395 Out of Hay(最小生成树,水)

    Description The cows have run <= N <= ,) farms (numbered ..N); Bessie starts at Farm . She'll ...

  5. POJ 2395 Out of Hay(求最小生成树的最长边+kruskal)

    Out of Hay Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18472   Accepted: 7318 Descr ...

  6. Poj 2395 Out of Hay( 最小生成树 )

    题意:求最小生成树中最大的一条边. 分析:求最小生成树,可用Prim和Kruskal算法.一般稀疏图用Kruskal比较适合,稠密图用Prim.由于Kruskal的思想是把非连通的N个顶点用最小的代价 ...

  7. POJ 2395 Out of Hay( 最小生成树 )

    链接:传送门 题意:求最小生成树中的权值最大边 /************************************************************************* & ...

  8. POJ 2395 Out of Hay(MST)

    [题目链接]http://poj.org/problem?id=2395 [解题思路]找最小生成树中权值最大的那条边输出,模板过的,出现了几个问题,开的数据不够大导致运行错误,第一次用模板,理解得不够 ...

  9. POJ 2395 Out of Hay

    这个问题等价于求最小生成树中权值最大的边. #include<cstdio> #include<cstring> #include<cmath> #include& ...

随机推荐

  1. 我见过的几门语言中的hello world

    1.Java public class hello { public static void main(String[] args){ System.out.println("hello w ...

  2. 面向企业客户的制造业CRM系统的不成熟思考

    CRM就是客户关系管理(Customer Relationship Management),一直一知半解,最近有涉及这方面的需求,所以稍作研究,并思考一些相关问题. CRM是什么? CRM具体如何定义 ...

  3. 最近提交并被合并的 jDiameter pull request 31 解决的问题

    使用过程中发现的问题都提交并合并了,应该会出现在1.7.0版本中: https://github.com/RestComm/jdiameter/pull/31 修复多个超时事件同时发生的问题. 修复B ...

  4. Android开发 Failed to install *.apk on device 'emulator-5554': EOF

    在运行android 程序时出现这样的错误: Failed to install homework.apk on device 'emulator-5554': EOF java.io.IOExcep ...

  5. 访问SAP的Domain的Value Range

    访问Domain的Value Range有两种方法: 1.直接访问表 dd07l和dd07T     select * from dd07l            where domname   = ...

  6. Universal-Image-Loader完全解析(上)

    Universal-Image-Loader完全解析(上) 基本介绍及使用 大家平时做项目的时候,或多或少都会接触到异步加载图片,或者大量加载图片的问题,而加载图片时候经常会遇到各种问题,如oom,图 ...

  7. iOS 验证邮箱手机号格式

    做登录界面时,用户在UITextfield中输入输入邮箱账号后,我们应该在本地验证格式是否正确,再将参数传给服务器验证. 最简单的就是利用系统的NSPredicate //利用正则表达式验证 -(BO ...

  8. 多线程基础(二)pthread的了解

    IOS中多线程的实现方案   了解NSOperation(代码) 所有的方法都是pthread开头的   然后再搞一条线程 pthread_create方法有返回值,作用:判断线程创建是否成功?   ...

  9. 《慕客网:IOS基础入门之Foundation框架初体验》学习笔记 <五> NSDicionary + NSMutableDictionary

    int main(int argc, const char * argv[]) { @autoreleasepool { //字典, 存储的内存不是连续的 用key和value进行对应(键值) //k ...

  10. [Nginx][HttpUpstreamModule]翻译负载均衡

    英文原文地址:http://nginx.org/en/docs/http/ngx_http_upstream_module.html 大纲: 示例 指令 嵌入变量 ngx_http_upstream_ ...