python数字图像处理(10):图像简单滤波
对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声;另一种是微分算子,可以用来检测边缘和特征提取。
skimage库中通过filters模块进行滤波操作。
1、sobel算子
sobel算子可用来检测边缘
函数格式为:skimage.filters.sobel(image, mask=None)
from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
edges = filters.sobel(img)
plt.imshow(edges,plt.cm.gray)
2、roberts算子
roberts算子和sobel算子一样,用于检测边缘
调用格式也是一样的:
edges = filters.roberts(img)
3、scharr算子
功能同sobel,调用格式:
edges = filters.scharr(img)
4、prewitt算子
功能同sobel,调用格式:
edges = filters.prewitt(img)
5、canny算子
canny算子也是用于提取边缘特征,但它不是放在filters模块,而是放在feature模块
函数格式:skimage.feature.canny(image,sigma=1.0)
可以修改sigma的值来调整效果
from skimage import data,filters,feature
import matplotlib.pyplot as plt
img = data.camera()
edges1 = feature.canny(img) #sigma=1
edges2 = feature.canny(img,sigma=3) #sigma=3 plt.figure('canny',figsize=(8,8))
plt.subplot(121)
plt.imshow(edges1,plt.cm.gray) plt.subplot(122)
plt.imshow(edges2,plt.cm.gray) plt.show()
从结果可以看出,sigma越小,边缘线条越细小。
6、gabor滤波
gabor滤波可用来进行边缘检测和纹理特征提取。
函数调用格式:skimage.filters.gabor_filter(image, frequency)
通过修改frequency值来调整滤波效果,返回一对边缘结果,一个是用真实滤波核的滤波结果,一个是想象的滤波核的滤波结果。
from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
filt_real, filt_imag = filters.gabor_filter(img,frequency=0.6) plt.figure('gabor',figsize=(8,8)) plt.subplot(121)
plt.title('filt_real')
plt.imshow(filt_real,plt.cm.gray) plt.subplot(122)
plt.title('filt-imag')
plt.imshow(filt_imag,plt.cm.gray) plt.show()
以上为frequency=0.6的结果图。
以上为frequency=0.1的结果图
7、gaussian滤波
多维的滤波器,是一种平滑滤波,可以消除高斯噪声。
调用函数为:skimage.filters.gaussian_filter(image, sigma)
通过调节sigma的值来调整滤波效果
from skimage import data,filters
import matplotlib.pyplot as plt
img = data.astronaut()
edges1 = filters.gaussian_filter(img,sigma=0.4) #sigma=0.4
edges2 = filters.gaussian_filter(img,sigma=5) #sigma=5 plt.figure('gaussian',figsize=(8,8))
plt.subplot(121)
plt.imshow(edges1,plt.cm.gray) plt.subplot(122)
plt.imshow(edges2,plt.cm.gray) plt.show()
可见sigma越大,过滤后的图像越模糊
8.median
中值滤波,一种平滑滤波,可以消除噪声。
需要用skimage.morphology模块来设置滤波器的形状。
from skimage import data,filters
import matplotlib.pyplot as plt
from skimage.morphology import disk
img = data.camera()
edges1 = filters.median(img,disk(5))
edges2= filters.median(img,disk(9)) plt.figure('median',figsize=(8,8)) plt.subplot(121)
plt.imshow(edges1,plt.cm.gray) plt.subplot(122)
plt.imshow(edges2,plt.cm.gray) plt.show()
从结果可以看出,滤波器越大,图像越模糊。
9、水平、垂直边缘检测
上边所举的例子都是进行全部边缘检测,有些时候我们只需要检测水平边缘,或垂直边缘,就可用下面的方法。
水平边缘检测:sobel_h, prewitt_h, scharr_h
垂直边缘检测: sobel_v, prewitt_v, scharr_v
from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
edges1 = filters.sobel_h(img)
edges2 = filters.sobel_v(img) plt.figure('sobel_v_h',figsize=(8,8)) plt.subplot(121)
plt.imshow(edges1,plt.cm.gray) plt.subplot(122)
plt.imshow(edges2,plt.cm.gray) plt.show()
上边左图为检测出的水平边缘,右图为检测出的垂直边缘。
10、交叉边缘检测
可使用Roberts的十字交叉核来进行过滤,以达到检测交叉边缘的目的。这些交叉边缘实际上是梯度在某个方向上的一个分量。
其中一个核:
0 1
-1 0
对应的函数:
roberts_neg_diag(image)
例:
from skimage import data,filters
import matplotlib.pyplot as plt
img =data.camera()
dst =filters.roberts_neg_diag(img) plt.figure('filters',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray) plt.subplot(122)
plt.title('filted image')
plt.imshow(dst,plt.cm.gray)
另外一个核:
1 0
0 -1
对应函数为:
roberts_pos_diag(image)
from skimage import data,filters
import matplotlib.pyplot as plt
img =data.camera()
dst =filters.roberts_pos_diag(img) plt.figure('filters',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray) plt.subplot(122)
plt.title('filted image')
plt.imshow(dst,plt.cm.gray)
python数字图像处理(10):图像简单滤波的更多相关文章
- python数字图像处理(四) 频率域滤波
import matplotlib.pyplot as plt import numpy as np import cv2 %matplotlib inline 首先读入这次需要使用的图像 img = ...
- python数字图像处理(17):边缘与轮廓
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...
- 「转」python数字图像处理(18):高级形态学处理
python数字图像处理(18):高级形态学处理 形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...
- Win8 Metro(C#) 数字图像处理--1 图像打开,保存
原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作. Win8Metro编程中,图像相关 ...
- Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化
原文:Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化 [函数名称] 简单统计法图像二值化 WriteableBitmap StatisticalThSegment(Wr ...
- python数字图像处理(1):环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- 初始----python数字图像处理--:环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- Win8 Metro(C#)数字图像处理--4图像颜色空间描述
原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述 图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...
- python数字图像处理(五) 图像的退化和复原
import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matpl ...
随机推荐
- iOS开发笔记13:顶部标签式导航栏及下拉分类菜单
当内容及分类较多时,往往采用顶部标签式导航栏,例如网易新闻客户端的顶部分类导航,最近刚好有这样的应用场景,参考网络上一些demo,实现了这种导航效果,记录一些要点. 效果图(由于视频转GIF掉帧,滑动 ...
- 8 Regular Expressions You Should Know
Regular expressions are a language of their own. When you learn a new programming language, they're ...
- android 进程/线程管理(三)----Thread,Looper / HandlerThread / IntentService
Thread,Looper的组合是非常常见的组合方式. Looper可以是和线程绑定的,或者是main looper的一个引用. 下面看看具体app层的使用. 首先定义thread: package ...
- Jmeter之Http Cookie Manager
一.Http Cookie Manager的作用: 1.自动管理cookie:象浏览器一样的存储和发送Cookie,如果发送一个http请求他的响应中包含Cookie,那么Cookie Manager ...
- SqlBulkCopy块拷贝数据时,不履行触发器和束缚 解决办法
在new SqlBulkCopy时,设置SqlBulkCopyOptions属性即可 SqlBulkCopy bulkCopy = new SqlBulkCopy(ConStr,SqlBulkCopy ...
- nyoj 211 Cow Contest
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=211 思路:我的思路是对每一个点,向上广搜,向下广搜,看总共能不能搜到n-1个结点,能,表 ...
- python django 模板
1 用两个大括号括起来的文字{{person_name}} 称为变量 2 被 大括号和面分号包围的文件({% if ordered_warranty %})是模板标签 3 过滤器是用管道符(|) 和U ...
- 本地数据下,radiobutton和图片组合,利用adapter+listview进行单选
浮生偷得半日闲,等接口定义的过程中,重新复习下adapter+listview实现单选的方法 主界面 <RelativeLayout xmlns:android="http://sch ...
- Hive Experiment 2(表动态分区和IDE)
1.使用oracle sql developer 4.0.3作为hive query的IDE. 下载hive-jdbc driver http://www.cloudera.com/content/c ...
- SQL TUNNING
In a Nested Loops Join, for example, the first accessed table is called the outer table and the seco ...