【BZOJ】1041: [HAOI2008]圆上的整点(几何)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041
所谓的神题,我不会,直接题解。。看了半天看懂题解了。详见hzwer博客
这题呢,我只能吸收些思想,即,当我们要找合法解的时候,我们可以深究它的性质,然后用性质来判定是否存在合法解。
此神题直接看题解打码。
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define read(a) a=getnum()
#define print(a) printf("%d", a)
#define debug(a) printf("%lld\n", a)
inline int getnum() { int ret=0; char c; for(c=getchar(); c<'0' || c>'9'; c=getchar()); for(; c>='0' && c<='9'; c=getchar()) ret=ret*10+c-'0'; return ret; }
typedef long long ll;
ll gcd(ll a, ll b) { return b?gcd(b, a%b):a; } inline bool check(ll A, ll B) {
if(((ll)sqrt(B)*(ll)sqrt(B))==B && A!=B)
if(gcd(A, B)==1) return true;
return false;
} int main() {
int ans=0;
ll d, d2, r, r2;
scanf("%lld", &r);
r2=r<<1;
ll m=sqrt(r2);
ll a;
for(d=1; d<=m; ++d) {
if(!(r2%d)) {
d2=d<<1;
for(a=1; a<=(ll)sqrt(r2/d2); ++a)
if(check(a*a, r2/d-a*a)) ++ans;
if(d!=r2/d) {
for(a=1; a<=(ll)sqrt(d/2); ++a)
if(check(a*a, d-a*a)) ++ans;
}
}
}
printf("%lld\n", (ll)(ans*4+4));
return 0;
}
Description
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
Input
r
Output
整点个数
Sample Input
Sample Output
HINT
n<=2000 000 000
Source
【BZOJ】1041: [HAOI2008]圆上的整点(几何)的更多相关文章
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点 - BZOJ
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...
随机推荐
- MySQL之扩展(触发器,存储过程等)
视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当作表来使用. SELECT * FROM ( SEL ...
- 代码风格与树形DP
Streaming很惨,不过因为比赛之间没有提交过就没掉(或掉了)rating.第二题是一个树形DP,但是我都在想第一题了,简直作死. 看着神犇的代码我也是醉了...各种宏,真是好好写会死系列. 看到 ...
- Ubuntu上如何安装Java,Eclipse,Pydev,Python(自带,不用装),BeautifulSoup
如何安装Java,如果出于编程的需要安装Java,需要安装的是JDK,而不仅仅是JRE,下面说说如何在Ubuntu下如何安装JDK:只有两步,1.下载并解压,2.配置环境变量1.下载并解压:下载地址: ...
- 海量数据导入MySQL的注意事项
对于千万行级别的数据,处理起来非常麻烦,例如有一个文件a.txt,大小超过2GB,共2000多万行,每行是一个新闻的相关信息,其中有一列为新闻标题,字符串型,新闻标题较长,现需要对新闻标题进行聚类,将 ...
- Windows命令行提取日期时间
参考: http://elicecn.blog.163.com/blog/static/174017473200931910320556/ SET str="%date:~0,4%%date ...
- Dom lesson1
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Object-c 控制语句
控制语句: 分支语句 if-else 有控制机制 switch 循环语句 while do-while for 跳转语句 break,continue,goto
- 关于https和数字证书的一些必须知识
下面这篇文章叫做 HTTPS连接的前几毫秒发生了什么 ,是一篇译文,写得不错,十分有助于理解https. http://blog.jobbole.com/48369/ 下面的链接是百度文库的 数字证 ...
- ubuntu使用root账户登录
1.先设定一个root的密码 sudo passwd root 2.编辑lightdm.conf sudo gedit /etc/lightdm/lightdm.conf 最后一行添加 greeter ...
- CSS“反转”为LESS
LESS(官网在此:http://lesscss.net/)的魅力相信大家都已明了,个人认为它最大的魅力在于能够清晰的展现嵌套关系. 针对现有的项目,它的应用难点主要在于—— 何时转换为css,即是否 ...