pandas 之 时间序列索引
import numpy as np
import pandas as pd
引入
A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects:
from datetime import datetime
dates = [
datetime(2011, 1, 2),
datetime(2011, 1, 5),
datetime(2011, 1, 7),
datetime(2011, 1, 8),
datetime(2011, 1, 10),
datetime(2011, 1, 12)
]
ts = pd.Series(np.random.randn(6), index=dates)
ts
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
Under the hood, these datetime objects have been put in a DatetimeIndex:
ts.index
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08',
'2011-01-10', '2011-01-12'],
dtype='datetime64[ns]', freq=None)
Like other Series, arithmetic operations between differently indexed time series auto-matically align(自动对齐) on the dates:
ts + ts[::2]
2011-01-02 1.651004
2011-01-05 NaN
2011-01-07 0.154049
2011-01-08 NaN
2011-01-10 -2.219823
2011-01-12 NaN
dtype: float64
Recall that ts[::2] selects every second element in ts:
pandas stores timestamp using NumPy's datetime64 data type the nanosecond resolution:
ts.index.dtype
dtype('<M8[ns]')
Scalar values from a DatetimeIndex are Timestamp object:
stamp = ts.index[0]
stamp
Timestamp('2011-01-02 00:00:00')
A Timestamp can be substituted(被替代) anywhere you would use a datetime object. Additionally, it can store frequency information(if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.
(各种转换操作, 对于时间序列)
索引-切片
Time series behaves like any other pandas.Series when you are indexing and selecting data based on label:
stamp = ts.index[2]
ts[stamp]
0.0770243257021936
As a convenience, you can also pass a string that is interpretable as a date:
ts['1/10/2011']
-1.109911691867437
ts['20110110']
-1.109911691867437
For longer time series, a year or only a year and month can be passed to easly select slices of data:
longer_ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
longer_ts[:5]
2000-01-01 0.401394
2000-01-02 0.720214
2000-01-03 0.488505
2000-01-04 0.446179
2000-01-05 -2.129299
Freq: D, dtype: float64
longer_ts['2001'][:5]
2001-01-01 0.315472
2001-01-02 0.796386
2001-01-03 0.611503
2001-01-04 0.980799
2001-01-05 0.184401
Freq: D, dtype: float64
Here, the string '2001' is interpreted as a year and selects that time period. This also works if you speicify the month:
longer_ts['2001-05'][:5]
2001-05-01 0.439009
2001-05-02 -0.304236
2001-05-03 0.603268
2001-05-04 -0.726460
2001-05-05 -0.521669
Freq: D, dtype: float64
"Slicing with detetime objects works as well"
ts[datetime(2011, 1, 7):]
'Slicing with detetime objects works as well'
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
Because most time series data is ordered chrnologically(按年代顺序的), you can slice with time-stamps not contained in a time series to perform a range query:
ts
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
ts['1/6/2011': '1/11/2011']
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
dtype: float64
As before, you can pass either a string date, datetime or timestamp. Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the orginal data.
There is an equivalent instance method,truncate that slices a Series between two dates:
ts.truncate(after='1/9/2011')
2011-01-02 0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
dtype: float64
All of this holds true for DataFrame as well, indexing on its rows:
# periods: 多少个, freq: 间隔
dates = pd.date_range('1/1/2000', periods=100, freq='W-WED')
long_df = pd.DataFrame(np.random.randn(100, 4),
index=dates,
columns=['Colorado', 'Texas', 'New York', 'Ohio'])
long_df.loc['5-2001']
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Colorado | Texas | New York | Ohio | |
---|---|---|---|---|
2001-05-02 | 0.972317 | 0.407519 | 0.628906 | 1.995901 |
2001-05-09 | 0.299961 | -1.208505 | 1.019247 | 2.244728 |
2001-05-16 | 0.628163 | -0.716498 | 0.621912 | 1.257635 |
2001-05-23 | 0.508852 | 0.753517 | -0.793127 | 0.273496 |
2001-05-30 | -1.443141 | -0.878143 | -0.680227 | 0.455401 |
重复索引
- ts.is_unique
- ts.groupby(level=0)
In some applications, there may be multiple data observations falling on a particular timestamp.Here is an example:
dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000',
'1/2/2000', '1/2/2000', '1/3/2000'
])
dup_ts = pd.Series(np.arange(5), index=dates)
dup_ts
2000-01-01 0
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-03 4
dtype: int32
We can tell that the index is not unique by checking its is_unique property:
dup_ts.index.is_unique
False
Indexing into this time series will now either produce scalar values or slice depending on whether a timestamp is duplicated:
dup_ts['1/3/2000'] # not duplicated
4
dup_ts['1/2/2000'] # duplicated
2000-01-02 1
2000-01-02 2
2000-01-02 3
dtype: int32
Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is use groupby and pass level=0
grouped = dup_ts.groupby(level=0) # 没有level 会报错, 默认是None
grouped.mean()
2000-01-01 0
2000-01-02 2
2000-01-03 4
dtype: int32
grouped.count()
2000-01-01 1
2000-01-02 3
2000-01-03 1
dtype: int64
pandas 之 时间序列索引的更多相关文章
- 笔记 | pandas之时间序列学习随笔1
1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...
- pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...
- pandas处理时间序列(3):重采样与频率转换
五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...
- 03. Pandas 2| 时间序列
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...
- pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()
Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据. pandas的实际类型主要分为: timestamp(时间戳) ...
- pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)
1.data_range生成时间范围 a) pd.date_range(start=None, end=None, periods=None, freq='D') start和end以及freq配合能 ...
- pandas处理时间序列(4): 移动窗口函数
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...
- pandas之时间序列
Pandas中提供了许多用来处理时间格式文本的方法,包括按不同方法生成一个时间序列,修改时间的格式,重采样等等. 按不同的方法生成时间序列 In [7]: import pandas as pd # ...
- pandas基础用法——索引
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Softwa ...
随机推荐
- mssql sqlserver if exists 用法大汇总
摘要: 下文讲述sqlserver中,更新脚本中常用if exists关键字的用法说明,如下所示: 实验环境:sql server 2008 R2 一.检测数据库是否存在于当前数据库引擎下 if ex ...
- nginx在centos下的安装
第一步:打开浏览器下载,再上传到centOS系统中 http://nginx.org/download/ 或者在 centOS系统输入: wget http://nginx.org/download/ ...
- CodeForces 1260D(二分+贪心+差分)
题意 https://vjudge.net/problem/CodeForces-1260D 有m个士兵,t秒,你要带尽可能多的士兵从0去n+1,且他们不能被杀死.路上有一些陷阱,陷阱d[i]会杀死能 ...
- CodeForces - 573A (简单数论+模拟)
题意 https://vjudge.net/problem/CodeForces-573A 有n个数ai ,你可以把每个数任意次×2 或×3 ,问能否最终使得每个数相等. 思路 x2和x3只能改变数 ...
- 系统设计与分析:Alpha版本2成绩汇总
作业要求 1.作业内容 作业具体要求以及评分标准 2.评分细则 •给出开头和团队成员列表(10’) •给出发布地址以及安装手册(20’) •给出测试报告(40’) •给出项目情况总结(30’) * ...
- Pwnable-fd
打开Ubuntu输入ssh fd@pwnable.kr -p2222,连接之后输入密码guest 之后就是ls -l看看里面的文件和权限,fd.fd.c.flag 看看fd.c的源码 #include ...
- ora-01489 字符串连接的结果过长 解决方案
如下代码,使用listagg进行分组拼接时,常常会报 ora-01489 错误,造成该报错的主要原因是:oracle对字符变量的长度限制,正常情况下,oracle定义的varchar2类型变量的长度不 ...
- Matlab各种拟合
作者:Z-HE链接:https://zhuanlan.zhihu.com/p/36103034来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1) polyfit 代码 ...
- bolb与base64的图片互转
直接看图简单明了. 注:便于测试你可以自己用base64图片测试互转一下.这里base64图片太长了就不给予展示了,望理解
- iOS Workflow 分享 - Create QR Code
上次我分享了一个 Scan QR Code 的 Workflow,这次我分享一个正好相反的.如果我要分享一个 URL(或者是一段非常短的文本)给别人,我就可以用这个 Workflow 来生成 QR C ...