import numpy as np
import pandas as pd

引入

A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects:

from datetime import datetime
dates = [
datetime(2011, 1, 2),
datetime(2011, 1, 5),
datetime(2011, 1, 7),
datetime(2011, 1, 8),
datetime(2011, 1, 10),
datetime(2011, 1, 12)
] ts = pd.Series(np.random.randn(6), index=dates) ts
2011-01-02    0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64

Under the hood, these datetime objects have been put in a DatetimeIndex:

ts.index
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08',
'2011-01-10', '2011-01-12'],
dtype='datetime64[ns]', freq=None)

Like other Series, arithmetic operations between differently indexed time series auto-matically align(自动对齐) on the dates:

ts + ts[::2]
2011-01-02    1.651004
2011-01-05 NaN
2011-01-07 0.154049
2011-01-08 NaN
2011-01-10 -2.219823
2011-01-12 NaN
dtype: float64

Recall that ts[::2] selects every second element in ts:

pandas stores timestamp using NumPy's datetime64 data type the nanosecond resolution:

ts.index.dtype
dtype('<M8[ns]')

Scalar values from a DatetimeIndex are Timestamp object:

stamp = ts.index[0]

stamp
Timestamp('2011-01-02 00:00:00')

A Timestamp can be substituted(被替代) anywhere you would use a datetime object. Additionally, it can store frequency information(if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.

(各种转换操作, 对于时间序列)

索引-切片

Time series behaves like any other pandas.Series when you are indexing and selecting data based on label:

stamp = ts.index[2]

ts[stamp]
0.0770243257021936

As a convenience, you can also pass a string that is interpretable as a date:

ts['1/10/2011']
-1.109911691867437
ts['20110110']
-1.109911691867437

For longer time series, a year or only a year and month can be passed to easly select slices of data:

longer_ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000)) longer_ts[:5]
2000-01-01    0.401394
2000-01-02 0.720214
2000-01-03 0.488505
2000-01-04 0.446179
2000-01-05 -2.129299
Freq: D, dtype: float64
longer_ts['2001'][:5]
2001-01-01    0.315472
2001-01-02 0.796386
2001-01-03 0.611503
2001-01-04 0.980799
2001-01-05 0.184401
Freq: D, dtype: float64

Here, the string '2001' is interpreted as a year and selects that time period. This also works if you speicify the month:

longer_ts['2001-05'][:5]
2001-05-01    0.439009
2001-05-02 -0.304236
2001-05-03 0.603268
2001-05-04 -0.726460
2001-05-05 -0.521669
Freq: D, dtype: float64
"Slicing with detetime objects works as well"

ts[datetime(2011, 1, 7):]
'Slicing with detetime objects works as well'

2011-01-07    0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64

Because most time series data is ordered chrnologically(按年代顺序的), you can slice with time-stamps not contained in a time series to perform a range query:

ts
2011-01-02    0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
2011-01-12 -0.469907
dtype: float64
ts['1/6/2011': '1/11/2011']
2011-01-07    0.077024
2011-01-08 -1.320742
2011-01-10 -1.109912
dtype: float64

As before, you can pass either a string date, datetime or timestamp. Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the orginal data.

There is an equivalent instance method,truncate that slices a Series between two dates:

ts.truncate(after='1/9/2011')
2011-01-02    0.825502
2011-01-05 0.453766
2011-01-07 0.077024
2011-01-08 -1.320742
dtype: float64

All of this holds true for DataFrame as well, indexing on its rows:

# periods: 多少个, freq: 间隔
dates = pd.date_range('1/1/2000', periods=100, freq='W-WED') long_df = pd.DataFrame(np.random.randn(100, 4),
index=dates,
columns=['Colorado', 'Texas', 'New York', 'Ohio']) long_df.loc['5-2001']

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
Colorado Texas New York Ohio
2001-05-02 0.972317 0.407519 0.628906 1.995901
2001-05-09 0.299961 -1.208505 1.019247 2.244728
2001-05-16 0.628163 -0.716498 0.621912 1.257635
2001-05-23 0.508852 0.753517 -0.793127 0.273496
2001-05-30 -1.443141 -0.878143 -0.680227 0.455401

重复索引

  • ts.is_unique
  • ts.groupby(level=0)

In some applications, there may be multiple data observations falling on a particular timestamp.Here is an example:

dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000',
'1/2/2000', '1/2/2000', '1/3/2000'
]) dup_ts = pd.Series(np.arange(5), index=dates) dup_ts
2000-01-01    0
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-03 4
dtype: int32

We can tell that the index is not unique by checking its is_unique property:

dup_ts.index.is_unique
False

Indexing into this time series will now either produce scalar values or slice depending on whether a timestamp is duplicated:

dup_ts['1/3/2000']  # not duplicated
4
dup_ts['1/2/2000']  # duplicated
2000-01-02    1
2000-01-02 2
2000-01-02 3
dtype: int32

Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is use groupby and pass level=0

grouped = dup_ts.groupby(level=0)  # 没有level 会报错, 默认是None
grouped.mean()
2000-01-01    0
2000-01-02 2
2000-01-03 4
dtype: int32
grouped.count()
2000-01-01    1
2000-01-02 3
2000-01-03 1
dtype: int64

pandas 之 时间序列索引的更多相关文章

  1. 笔记 | pandas之时间序列学习随笔1

    1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...

  2. pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术

    一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...

  3. pandas处理时间序列(3):重采样与频率转换

    五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...

  4. 03. Pandas 2| 时间序列

    1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...

  5. pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()

      Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据.   pandas的实际类型主要分为: timestamp(时间戳) ...

  6. pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)

    1.data_range生成时间范围 a) pd.date_range(start=None, end=None, periods=None, freq='D') start和end以及freq配合能 ...

  7. pandas处理时间序列(4): 移动窗口函数

    六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...

  8. pandas之时间序列

    Pandas中提供了许多用来处理时间格式文本的方法,包括按不同方法生成一个时间序列,修改时间的格式,重采样等等. 按不同的方法生成时间序列 In [7]: import pandas as pd # ...

  9. pandas基础用法——索引

    # -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Softwa ...

随机推荐

  1. Android刷机

    1.安装第三方recovery 下载自己手机适配的recovery包 https://twrp.me/lg/lgnexus5.html fastboot 卡在 waiting for device $ ...

  2. PyQt5-TableWidget 表格视图

    基于PyQt5 postgreSQL实现简单的数据插入.数据表格查询. 运行前需要安装psycopg2 模块,配置好postgerSQL. 先看效果图: 第1列为日期时间.第2列为自增1的编号.第3到 ...

  3. 第十七周博客作业 <西北师范大学| 周安伟>

    第十七周作业 助教博客链接https://home.cnblogs.com/u/zaw-315/ 作业要求链接https://www.cnblogs.com/nwnu-daizh/p/11012922 ...

  4. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  5. 有缓存区的管道channel

    package main import ( "fmt" "time" ) func main() { //创建一个有缓存区的管道 ch := make(chan ...

  6. Luogu P5416 [CTSC2016]时空旅行

    第一次写线段树分治的题目,没想到是道这么毒的题233 首先发现题目里的\((x,y,z,c)\)就是在放屁,只有\((x,c)\)是有用的 因此我们可以把题意转化为,在某一个时间节点上,求出所有元素的 ...

  7. Unreal Engine 4 系列教程 Part 8:粒子系统教程

    .katex { display: block; text-align: center; white-space: nowrap; } .katex-display > .katex > ...

  8. paramiko简介

    一.什么是paramiko 要想明白什么是paramiko,要先明白ssh协议. 二.什么是ssh协议 ssh全称是Secure Shell (翻译:安全的外壳),根据字面意思就可以知道是和安全相关的 ...

  9. Course: ISA 414

    Assignment #4Course: ISA 414Points:100Due date: November 18th, 2019, before 11:59 pmSubmission instr ...

  10. linux基础学习路线&review

    linux基础学习网址: https://www.runoob.com/linux/linux-tutorial.html 比较重点的是这个启动过程的介绍学习:https://www.runoob.c ...