typedef & #defiine & struct
#define(宏定义)只是简单的字符串代换(原地扩展),它本身并不在编译过程中进行,而是在这之前(预处理过程)就已经完成了。
typedef是为了增加可读性而为标识符另起的新名称(仅仅只是个别名),它的新名字具有一定的封装性,以致于新命名的标识符具有更易定义变量的功能,它是语言编译过程的一部分,但它并不实际分配内存空间。
一般都遵循#define定义“可读”的常量以及一些宏语句的任务,而typedef则常用来定义关键字、冗长的类型的别名。
typedef是语句( 以';'结尾),而#define不是语句( 不以';'结尾)
用途一:
定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如:
char* pa, pb; // 这多数不符合我们的意图,它只声明了一个指向字符变量的指针 和一个字符变量;
以下则可行:
typedef char* PCHAR;
PCHAR pa, pb;
这种用法很有用,特别是char* pa, pb的定义,初学者往往认为是定义了两个字符型指针,其实不是,而用typedef char* PCHAR就不会出现这样的问题,减少了错误的发生。
用途二:
用在旧的C代码中,帮助struct。以前的代码中,声明struct新对象时,必须要带上struct,即形式为: struct 结构名对象名,如:
struct tagPOINT1
{
    int x;
int y; 
};
struct tagPOINT1 p1;
而在C++中,则可以直接写:结构名对象名,即:tagPOINT1 p1;
typedef struct tagPOINT
{
    int x;
int y;
}POINT;
POINT p1; // 这样就比原来的方式少写了一个struct,比较省事,尤其在大量使用的时候,或许,在C++中,typedef的这种用途二不是很大,但是理解了它,对掌握以前的旧代
码还是有帮助的,毕竟我们在项目中有可能会遇到较早些年代遗留下来的代码。
有关struct的用法 在后面
用途三:
用typedef来定义与平台无关的类型。
比如定义一个叫 REAL 的浮点类型,在目标平台一上,让它表示最高精度的类型为:
typedef long double REAL;
在不支持 long double 的平台二上,改为:
typedef double REAL;
在连 double 都不支持的平台三上,改为:
typedef float REAL;
也就是说,当跨平台时,只要改下 typedef 本身就行,不用对其他源码做任何修改。
标准库就广泛使用了这个技巧,比如size_t。另外,因为typedef是定义了一种类型的新别名,不是简单的字符串替换,所以它比宏来得稳健。
     这个优点在我们写代码的过程中可以减少不少代码量哦!
用途四: (这个不太懂,以后解决)
为复杂的声明定义一个新的简单的别名。方法是:在原来的声明里逐步用别名替换一部
分复杂声明,如此循环,把带变量名的部分留到最后替换,得到的就是原声明的最简化
版。举例:
原声明:void (*b[10]) (void (*)());
变量名为b,先替换右边部分括号里的,pFunParam为别名一:
typedef void (*pFunParam)();
再替换左边的变量b,pFunx为别名二:
typedef void (*pFunx)(pFunParam);
原声明的最简化版:
pFunx b[10];
 
原声明:doube(*)() (*e)[9];
变量名为e,先替换左边部分,pFuny为别名一:
typedef double(*pFuny)();
再替换右边的变量e,pFunParamy为别名二
typedef pFuny (*pFunParamy)[9];
原声明的最简化版:
pFunParamy e;
理解复杂声明可用的“右左法则”:从变量名看起,先往右,再往左,碰到一个圆括号
就调转阅读的方向;括号内分析完就跳出括号,还是按先右后左的顺序,如此循环,直
到整个声明分析完。举例:
int (*func)(int *p);
首先找到变量名func,外面有一对圆括号,而且左边是一个*号,这说明func是一个指针
;然后跳出这个圆括号,先看右边,又遇到圆括号,这说明(*func)是一个函数,所以
func是一个指向这类函数的指针,即函数指针,这类函数具有int*类型的形参,返回值
类型是int。
int (*func[5])(int *);
func右边是一个[]运算符,说明func是具有5个元素的数组;func的左边有一个*,说明
func的元素是指针(注意这里的*不是修饰func,而是修饰func[5]的,原因是[]运算符
优先级比*高,func先跟[]结合)。跳出这个括号,看右边,又遇到圆括号,说明func数
组的元素是函数类型的指针,它指向的函数具有int*类型的形参,返回值类型为int。
这种用法是比较复杂的,出现的频率也不少,往往在看到这样的用法却不能理解,相信以上的解释能有所帮助。
*****以上为参考部分,以下为本人领悟部分*****
使用示例:
1.比较一:
#include <iostream>
using namespace std;
typedef int (*A) (char, char);
int ss(char a, char b)
{
    cout<<"功能1"<<endl;
cout<<a<<endl;
cout<<b<<endl;
return 0;
}
 
int bb(char a, char b)
{
cout<<"功能2"<<endl;
cout<<b<<endl;
cout<<a<<endl;
return 0;
}
void main()
{
A a;
a = ss;
a('a','b');
a = bb;
a('a', 'b');
}
2.比较二:
typedef int (A) (char, char);
void main()
{
A *a;
a = ss;
a('a','b');
a = bb;
a('a','b');
}
两个程序的结果都一样:
功能1
a
b
功能2
b
a
#define与const区别(定义常量):
1. const常量有数据类型,而#define(宏)常量没有数据类型。编译器可以对前者进行类型安全检查。而对后者只进行字符替换,没有类型安全检查,并且在字符替换可能会产生意料不到的错误(边际效应)。
2. const常量在堆栈分配了空间,而#define(宏)常量只是把具体数值直接传递到目标变量罢了。或者说,const的常量是一个Run-Time的概念,他在程序中确确实实的存在并可以被调用、传递。而#define常量则是一个Compile-Time概念,它的生命周期止于编译期:在实际程序中他只是一个常数、一个命令中的参数,没有实际的存在。
3. const常量存在于程序的数据段,#define常量存在于程序的代码段。
4. 有些集成化的调试工具可以对const常量进行调试,但是不能对宏常量进行调试。
typedef 与 #define的区别:
案例一:
通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:
typedef char *pStr1;
#define pStr2 char *;
pStr1 s1, s2;
pStr2 s3, s4;
在上述的变量定义中,s1、s2、s3都被定义为char *,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。
案例二:
下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?
typedef char * pStr;
char string[4] = "abc";
const char *p1 = string;
const pStr p2 = string;
p1++;
p2++;
是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的
文本替换。上述代码中const pStr p2并不等于const char * p2。const pStr p2和
const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类
型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数
据类型为char *的变量p2为只读,因此p2++错误。虽然作者在这里已经解释得很清楚了,可我在这个地方仍然还是糊涂的,真的希望哪位高手能帮忙指点一下,特别是这一句“只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已”,难道自己定义的类型前面用const修饰后,就不能执行更改运算,而系统定义的类型却可以?
#define的用法:
1、简单的宏定义
#define MAXTIME 1000一个简单的MAXTIME就定义好了,它代表1000,如果在程序里面写:
if(i<MAXTIME){

}编译器在处理这个代码之前会对MAXTIME进行处理替换为1000。
这样的定义看起来类似于普通的常量定义const,但也有着不同,因为define的定义只是简单的替换,而不是作为一个量来使用,这个问题在下面反映的尤为突出。
2、带参数的宏
define可以像函数那样接受一些参数,如下:
#define max(x,y) (x)>(y)?(x):(y);它将返回两个数中较大的那个,这个“函数”没有类型检查,就好像一个函数模板似的,当然,不难看出它绝对没有模板那么安全。
因为这样做的话存在隐患,例子如下:
#define Add(a,b) a+b;一般的单独使用是没有问题的,但是如果遇到如:c * Add(a,b) * d的时候就会出现问题,代数式的本意是a+b然后和c,d相乘,但是因为使用了define(它只是一个简单的替换),所以式子实际上变成了c*a + b*d 。
再看看这个例子:
#define int_ptr int *;
int_ptr a,b;本意是a和b都是int型指针,但是实际上变成
int* a,b;a是int型指针,而b是int型变量。这时应该使用typedef定义:
typedef int* int_ptr;
int_ptr a,b;这样a和b就都是int型指针了。
3、define的多行定义
define可以替代多行的代码,例如MFC中的宏定义(非常的经典,虽然让人看了恶心)
#define MACRO(arg1, arg2) do { /
/* declarations */ /
stmt1; /
stmt2; /
/* 
 */ /
} while(0) /* (no trailing ; ) */关键是要在每一个换行的时候加上一个"/"。
4、在大规模的开发过程中,特别是跨平台和系统的软件里,define最重要的功能是条件编译。
#ifdef WINDOWS





#endif
#ifdef LINUX





#endif可以在编译的时候通过#define设置编译环境
5、如何定义宏、取消宏
//定义宏
#define [MacroName] [MacroValue]
//取消宏
#undef [MacroName]
//普通宏
#define PI (3.1415926)
//带参数的宏
#define max(a,b) ((a)>(b)? (a),(b))关键是十分容易产生错误,包括机器和人理解上的差异等等。
6、条件编译
#ifdef XXX…(#else) …#endif
例如:
#ifdef DV22_AUX_INPUT
#define AUX_MODE 3
#else
#define AUY_MODE 3
#endif
#define和typedef的区别:
1、 #define是预处理指令,在编译预处理时进行简单的替换,不作正确性检查,不管含义是否正确照样带入,只有在编译已被展开的源程序时才会发现可能的错误并报错。例如:
#define PI 3.1415926
程序中的:area=PI*r*r 会替换为3.1415926*r*r
如果你把#define语句中的数字9 写成字母g 预处理也照样带入。
2、typedef是在编译时处理的。它在自己的作用域内给一个已经存在的类型一个别名,但是You cannot use the typedef specifier inside a function definition。
3、
typedef int * int_ptr;与
#define int_ptr int *作用都是用int_ptr代表 int * ,但是二者不同,正如前面所说,#define在预处理时只是进行简单的替换,而typedef不是简单替换 ,而是采用如同定义变量的方法那样来声明一种类型。重复前面的例子:
#define int_ptr int *
int_ptr a,b; //相当于int * a, b; 只是简单的宏替换,a是整型指针,而b之是整型变量
typedef int * int_ptr;
int_ptr a,b; //a, b 都为指向int的指针,typedef为int* 引入了一个新的助记符4、也许您已经注意到#define不是语句,不要在行末加分号,否则会连分号一块置换;但是typedef结束必须加分号,因为它是语句。
typedef的四个用途和两个陷阱
用途一: 
定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如: 
char*     pa,     pb;       //     这多数不符合我们的意图,它只声明了一个指向字符变量的指针,   
//     和一个字符变量; 
以下则可行: 
typedef     char*     PCHAR;       //     一般用大写 
PCHAR     pa,     pb;                   //     可行,同时声明了两个指向字符变量的指针 
虽然: 
char     *pa,     *pb; 
也可行,但相对来说没有用typedef的形式直观,尤其在需要大量指针的地方,typedef的方式更省事。
用途二: 
用在旧的C代码中(具体多旧没有查),帮助struct。以前的代码中,声明struct新对象时,必须要带上struct,即形式为:     struct     结构名     对象名,如: 
struct     tagPOINT1 
{ 
          int     x; 
          int     y; 
}; 
struct     tagPOINT1     p1;
而在C++中,则可以直接写:结构名     对象名,即: 
tagPOINT1     p1;
估计某人觉得经常多写一个struct太麻烦了,于是就发明了: 
typedef     struct     tagPOINT 
{ 
          int     x; 
          int     y; 
}POINT;
POINT p1; // 这样就比原来的方式少写了一个struct,比较省事,尤其在大量使用的时候
或许,在C++中,typedef的这种用途二不是很大,但是理解了它,对掌握以前的旧代码还是有帮助的,毕竟我们在项目中有可能会遇到较早些年代遗留下来的代码。
用途三: 
用typedef来定义与平台无关的类型。 
比如定义一个叫     REAL     的浮点类型,在目标平台一上,让它表示最高精度的类型为: 
typedef     long     double     REAL;   
在不支持     long     double     的平台二上,改为: 
typedef     double     REAL;   
在连     double     都不支持的平台三上,改为: 
typedef     float     REAL;   
也就是说,当跨平台时,只要改下     typedef     本身就行,不用对其他源码做任何修改。 
标准库就广泛使用了这个技巧,比如size_t。 
另外,因为typedef是定义了一种类型的新别名,不是简单的字符串替换,所以它比宏来得稳健(虽然用宏有时也可以完成以上的用途)。
用途四: 
为复杂的声明定义一个新的简单的别名。方法是:在原来的声明里逐步用别名替换一部分复杂声明,如此循环,把带变量名的部分留到最后替换,得到的就是原声明的最简化版。举例:
1.     原声明:int     *(*a[5])(int,     char*); 
变量名为a,直接用一个新别名pFun替换a就可以了: 
typedef     int     *(*pFun)(int,     char*);   
原声明的最简化版: 
pFun     a[5];
2.     原声明:void     (*b[10])     (void     (*)()); 
变量名为b,先替换右边部分括号里的,pFunParam为别名一: 
typedef     void     (*pFunParam)(); 
再替换左边的变量b,pFunx为别名二: 
typedef     void     (*pFunx)(pFunParam); 
原声明的最简化版: 
pFunx     b[10];
3.     原声明:doube(*)()     (*e)[9];   
变量名为e,先替换左边部分,pFuny为别名一: 
typedef     double(*pFuny)(); 
再替换右边的变量e,pFunParamy为别名二 
typedef     pFuny     (*pFunParamy)[9]; 
原声明的最简化版: 
pFunParamy     e;
理解复杂声明可用的“右左法则”:从变量名看起,先往右,再往左,碰到一个圆括号就调转阅读的方向;括号内分析完就跳出括号,还是按先右后左的顺序,如此循环,直到整个声明分析完。举例: 
int     (*func)(int     *p); 
首先找到变量名func,外面有一对圆括号,而且左边是一个*号,这说明func是一个指针;然后跳出这个圆括号,先看右边,又遇到圆括号,这说明 (*func)是一个函数,所以func是一个指向这类函数的指针,即函数指针,这类函数具有int*类型的形参,返回值类型是int。 
int     (*func[5])(int     *); 
func右边是一个[]运算符,说明func是具有5个元素的数组;func的左边有一个*,说明func的元素是指针(注意这里的*不是修饰func, 而是修饰func[5]的,原因是[]运算符优先级比*高,func先跟[]结合)。跳出这个括号,看右边,又遇到圆括号,说明func数组的元素是函数 类型的指针,它指向的函数具有int*类型的形参,返回值类型为int。
也可以记住2个模式: 
type     (*)(....)函数指针   
type     (*)[]数组指针
陷阱一: 
记住,typedef是定义了一种类型的新别名,不同于宏,它不是简单的字符串替换。比如: 
先定义: 
typedef     char*     PSTR; 
然后: 
int     mystrcmp(const     PSTR,     const     PSTR);
const     PSTR实际上相当于const     char*吗?不是的,它实际上相当于char*     const。 
原因在于const给予了整个指针本身以常量性,也就是形成了常量指针char*     const。 
简单来说,记住当const和typedef一起出现时,typedef不会是简单的字符串替换就行。
陷阱二: 
typedef在语法上是一个存储类的关键字(如auto、extern、mutable、static、register等一样),虽然它并不真正影响对象的存储特性,如: 
typedef     static     int     INT2;     //不可行 
编译将失败,会提示“指定了一个以上的存储类”。
struct用法
基本定义:结构体,通俗讲就像是打包封装,把一些变量有共同特征(比如同属于某一类事物的属性)的变量封装在内部,通过一定方法访问修改内部变量。
结构体定义:
第一种:只有结构体定义
struct stuff{
        char job[20];
        int age;
        float height;
};
第二种:附加变量初始化的结构体定义
//直接带变量名Huqinwei
struct stuff{
char job[20];
int age;
float height;
}Huqinwei;
也许初期看不习惯容易困惑,其实这就相当于:
struct stuff{
        char job[20];
        int age;
        float height;
};
struct stuff Huqinwei;
第三种:如果该结构体你只用一个变量Huqinwei,而不再需要用“struct stuff yourname;”去定义第二个变量。
那么,附加变量初始化的结构体定义还可进一步简化出第三种:
struct{
        char job[20];
        int age;
        float height;
}Huqinwei;
把结构体名称去掉,这样更简洁,不过也不能定义其他同结构体变量了。
结构体变量及其内部成员变量的定义及访问:
绕口吧?要分清结构体变量和结构体内部成员变量的概念。
就像刚才的第二种提到的,结构体变量的声明可以用:
struct stuff yourname;
其成员变量的定义可以随声明进行:
struct stuff Huqinwei = {"manager",30,185};
也可以考虑结构体之间的赋值:
struct stuff faker = Huqinwei;
//或 struct stuff faker2;
// faker2 = faker;
打印,可见结构体的每一个成员变量一模一样
如果不使用上边两种方法,那么成员数组的操作会稍微麻烦(用for循环可能好点)
Huqinwei.job[0] = 'M';
Huqinwei.job[1] = 'a';
Huqinwei.age = 27;
Huqinwei.height = 185;
结构体成员变量的访问除了可以借助符号".",还可以用"->"访问(下边会提)。
指针和数组:
这是永远绕不开的话题,首先是引用:
struct stuff *ref = &Huqinwei;
ref->age = 100;
printf("age is:%d\n",Huqinwei.age);
结构体也不能免俗,必须有数组:
struct test{
        int a[3];
        int b;
};
//对于数组和变量同时存在的情况,有如下定义方法:
        struct test student[3] =      {{{66,77,55},0},
                                        {{44,65,33},0},
                                        {{46,99,77},0}};
//特别的,可以简化成:
        struct test student[3] =       {{66,77,55,0},
                                        {44,65,33,0},
                                        {46,99,77,0}};
结构体嵌套:
结构体嵌套其实没有太意外的东西,只要遵循一定规律即可:
//对于“一锤子买卖”,其中A、B可删,不过最好带着
struct A{
struct B{
int c;
}
b;
}
a;
//使用如下方式访问:
a.b.c = 10;
特别的,可以一边定义结构体B,一边就使用上:
struct A{
        struct B{
                int c;
        }b;
        struct B sb;
}a;
传递副本和指针了 :
//struct A定义同上
//设立了两个函数,分别传递struct A结构体和其指针。
void func1(struct A a){
printf("%d\n",a.b.c);
}
void func2(struct A* a){
printf("%d\n",a->b.c);
}
main(){
a.b.c = 112;
struct A * pa;
pa = &a;
func1(a);
func2(&a);
func2(pa);
}
占用内存空间:
struct结构体,在结构体定义的时候不能申请内存空间,不过如果是结构体变量,声明的时候就可以分配——两者关系就像C++的类与对象,对象才分配内存(不过严格讲,作为代码段,结构体定义部分“.text”真的就不占空间了么?)。
结构体的大小是结构体所含变量大小的总和,并且不能用"char a[]"这种弹性(flexible)变量,必须明确大小,下面打印输出上述结构体的size:
        printf("size of struct man:%d\n",sizeof(struct man));
        printf("size:%d\n",sizeof(Huqinwei));
结果毫无悬念,都是28:分别是char数组20,int变量4,浮点变量4.
和C++的类不一样,结构体不可以给结构体内部变量初始化,。
如下,为错误示范:
#include<stdio.h>
//直接带变量名Huqinwei
struct stuff{
// char job[20] = "Programmer";
// char job[];
// int age = 27;
// float height = 185;
}Huqinwei;
typedef & #defiine & struct的更多相关文章
- Why should we typedef a struct so often in C? - Stack Overflow
		
https://stackoverflow.com/questions/252780/why-should-we-typedef-a-struct-so-often-in-c As Greg Hewg ...
 - 关于typedef在struct使用上的一些问题
		
typedef struct lnode{ int data; struct lnode next; }lnode,linklist; 第一行的lnode是结构体名,最后一行的lnode是由typed ...
 - typedef struct与struct的区别
		
typedef struct与struct的区别 1. 基本解释 typedef为C语言的关键字,作用是为一种数据类型定义一个新名字.这里的数据类型包括内部数据类型(int,char等)和自定义的数据 ...
 - 关于typedef和struct
		
在struct中使用自身,需要加struct关键字,无论带不带typedef,例如: struct A { int a; struct A *pA; }; 在定义struct方面尽量不要使用typed ...
 - struct和typedef struct用法
		
参考:http://www.cnblogs.com/qyaizs/articles/2039101.html C语言: typedef struct Student{ int score; }Stu; ...
 - struct和typedef struct在c++中的用法
		
#include<iostream> using namespace std; struct test{ int a; }test; //定义了结构体类型test,声明变量时候直接test ...
 - C++ typedef详解
		
1.typedef的用途1)定义一种类型的别名注意typedef并不是简单的宏替换,如下例所示: int main() { char *pa,pb;//声明了一个指向字符变量的指针pa,和一个字符变量 ...
 - 见怪不怪的typedef
		
typedef是C++中的一个十分重要的关键字,它有强大的功能和方法的用途.但是有时候,碰到一些用到typedef的地方却感到很奇怪了. 给个栗子尝尝: typedef void(*pFun)(voi ...
 - 结构体 + typedef
		
简单结构体 struct student{ char name[20]; //可以用scanf或者直接赋值 *如果用char *name 在用scanf时没有内存接收 long id; int ...
 
随机推荐
- Flask:Flask的模板系统和静态文件
			
1.Flask模板系统 Django框架有自己独立的模板系统,而Flask是没有的,Flask默认采用jinjia2模板系统,jinjia2是仿写Django模板系统的一个第三方模块,但性能上要比Dj ...
 - 搭建邮件服务器,使用Postfix与Dovecot收发电子邮件
			
小知识: 我们为什么要搭建邮件服务器呢?有时候我们处于一个局域网内,不能及时的分享各自的研究成果,迫切的需要一种能够借助于网络且建立在计算机之间的传输数据的方法.所以我们需要搭建邮件服务器,这样的话既 ...
 - [考试反思]0817NOIP模拟测试24:冲淡
			
一切都还好吗? 是啊,还好. 前两名仍然被外校包揽/ B哥140撑住场面,120/110/100不等.我90分混吃等死排了个大并列第10. 考前说要考凸包,打开了几个博客慢慢看一直到考试开始. 然而我 ...
 - NOIp2017 列队(线段树)
			
嘛..两年前的题目了,想起第一次参加提高组还骗了一个省二回来呢...跟同学吹了好久的... 离退役又近了一骗博客啊.. 闲聊结束. 照常化简:给定一个1-n*m编号的矩阵,每次删除一个位置,然后左边向 ...
 - Docker学习-Spring Boot on Docker
			
1.创建spring boot项目 https://start.spring.io/ pom.xml文件新增docker支持 <build> <plugins> <plu ...
 - (十七)golang--闭包(简单明了)
			
所谓闭包:就是一个函数和其相关的引用环境组合的一个整体: 首先,有如下一个小例子,最终的输出结果是什么呢?是输出11,12吗? 对上述代码说明:(1)addUpper是一个函数,返回的是func(in ...
 - 深入讲解 Laravel 的 IoC 服务容器
			
众所周知,Laravel 控制反转 (IoC) / 依赖注入 (DI) 的功能非常强大.遗憾的是, 官方文档 并没有详细讲解它的所有功能,所以我决定自己实践一下,并整理成文.下面的代码是基于 Lara ...
 - 020.掌握Pod-Pod基础使用
			
一 Pod定义详解 1.1 完整Pod定义文件 apiVersion: v1 #必选,版本号,例如v1,版本号必须可以用 kubectl api-versions 查询到 kind: Pod #必选, ...
 - (C#)WPF:关于INotifyPropertyChanged接口的介绍
			
注意:INotifyPropertyChanged接口位于System.CompenentModel名称空间中,想使用INotifyPropertyChanged接口时,头文件需添加“using Sy ...
 - jenkins手把手教你从入门到放弃01-jenkins简介(详解)
			
一.简介 jenkins是一个可扩展的持续集成引擎.持续集成,也就是通常所说的CI(Continues Integration),可以说是现代软件技术开发的基础.持续集成是一种软件开发实践, 即团队开 ...