trec 2019 fair ranking track


    最近实验室要求参加trec 2019新出的track:fair ranking track。这里整理一下该任务的思想和要求。这次track主要为学术论文数据的排序。

1 Protocol

    会给定一个query集合Q,其中$q\in Q$。对于每个请求,会有一个query q和一个文档集合$D_q$。你需要做的就是根据q来重排序(rerank)$D_q$,重排序结果是$\pi$。最后把每一个请求都处理完返回$\pi$的集合的$\Pi$。过程如下:

Algorithm 1 Evaluation protocol


$\Pi$←{}
for q,$D_q\in Q$ do
$\pi$←SYSTEM(q,$D_q$)
$\Pi$←$\Pi+[\pi]$
end for
return $\Pi$


2 Evaluation

    衡量指标主要分为两部分,相关性(revelance)和公平性(fairness)。
    所谓相关性就是document和query的相关性,公平性主要为Author Exposure即论文作者的曝光度。
    先介绍如何衡量作者的曝光度:

2.1 Measuring Fairness

2.1.1 Measuring Author Exposure for a Single Ranking

    先为单个请求的重排序结果$\pi$计算作者的曝光度,某个作者a,在结果$\pi$的曝光度计算如下:

$$e_a^\pi=\sum^n_{i=1}[\gamma^{i-1}\Pi^{i-1}_{j=1}(1-p(s|\pi_j))]I(\pi_i\in D_a)$$

    其中$\gamma$是一个给定的常数,$\gamma^{i-1}$用于表示排序后的document从上到下逐渐衰减的重要程度。$p(s|\pi_j)$表示用户看到排序的第j篇文档停下来的概率,该track假设用户停止的概率$p(s|\pi_j)$=$f(r_d)$,$f(r_d)$是用户被满足的概率,$r_d$是document和query的相关程度,f是一个单调函数。这代表着,document与query相关度越高,用户越容易被满足,所以停下来不再阅读。
    $I(\pi_i\in D_a)$是指示函数,当第i篇文档属于作者a,该函数值为1,否则为0。$e^\pi_a$是排序$\pi$中作者a的曝光度(exposure)。
    那么在所有结果中,作者a的曝光度如下:

$$e_a=\sum_{\pi\in \Pi}e^\pi_a$$

2.1.2 Measuring Author Relevance for a Single Ranking

    上一节是衡量对于作者的曝光度,这一节主要考虑作者的相关性。什么叫作者的相关性呢,它是衡量作者论文在排序中的相关性之和,也就是对作者论文重要性的考量。

$$r^\pi_a=\sum_{d\in D_a}p(s|d)$$

    $r_a^\pi$是排序$\pi$中作者a所有文章相关性的求和。

2.1.3 Measuring Group Fairness

    上面给出了单个作者的exposure和relevance,每个作者都有从属于的group,按group累加作者的fairness以及relevance就能分别得到group的exposure和relevance。

$$\epsilon_g=\frac{\sum_{a\in A_g}e_a}{\sum_{g'\in G}\sum_{a\in A_{g'}}e_a}$$

$$R_g=\frac{\sum_{a\in A_g}r_a}{\sum_{g'\in G}\sum_{a\in A_{g'}}r_a}$$

    所谓公平,就是让不同group的$\epsilon_g$和$R_g$差距尽可能一致。

$$\Delta_g=|\epsilon_g-R_g|$$

   最后对所有group求一个Gini coefficient

$\Delta=\frac{\sum_{g,g'\in G}|\Delta_g-\Delta_{g'}|}{2|G|\sum_{g\in G}\Delta_g}$

2.2 Measuring Relevance

  前面按group计算了exposure,这一节给出相关性$u_a^\pi$的计算。和$e_a^\pi$的公式几乎一样,就是把指示函数换成$p(s|\pi_i)$。

$$u_a^\pi=\sum^n_{i=1}[\gamma^{i-1}\Pi^{i-1}_{j=1}(1-p(s|\pi_j))]p(s|\pi_i)$$

$$U=\frac{1}{\Pi}\sum_{\pi\in \Pi}u^\pi$$

2.3 Trading Off Fairness and Relevance

    按作者给的文档原话说,理论上fairness和relevance能够达到最优,但是实际操作上,可能往往提高fairness会降低relevance。所以最终要按一定比例寻求一个平衡。

trec 2019 fair ranking track的更多相关文章

  1. China International Industry Fair 2019

    Today i visit the CIIF 2019, as a "professional visitor"  since i have made an appointment ...

  2. 2019.02.14 codechef Chef at the Food Fair(线段树+泰勒展开)

    传送门 题意:现在有nnn个位置,每个位置上有一个值aia_iai​. 要求支持如下两种操作: 区间乘vvv 求区间的(1−ai)(1-a_i)(1−ai​)之积 思路: 考虑转换式子: Ans=∏i ...

  3. COSC2309/2347 Semester 1, 2019

    Mobile Application DevelopmentCOSC2309/2347 Semester 1, 2019Movie Night PlannerAssignment 1 (20 mark ...

  4. Fair Scheduler中的Delay Schedule分析

    延迟调度的主要目的是提高数据本地性(data locality),减少数据在网络中的传输.对于那些输入数据不在本地的MapTask,调度器将会延迟调度他们,而把slot分配给那些具备本地性的MapTa ...

  5. Making every developer more productive with Visual Studio 2019

    Today, in the Microsoft Connect(); 2018 keynote, Scott Guthrie announced the availability of Visual ...

  6. Ultimate Facebook Messenger for Business Guide (Feb 2019)

    Ultimate Facebook Messenger for Business Guide (Updated: Feb 2019) By Iaroslav Kudritskiy November 2 ...

  7. CSc 352 (Spring 2019): Assignment

    CSc 352 (Spring 2019): Assignment 11Due Date: 11:59PM Wed, May 1The purpose of this assignment is to ...

  8. 2019 AI CITY CHALLENGE

    官网:    https://www.aicitychallenge.org/ 基于来自交通,信号系统,基础设施和运输的传感器数据,存在使运输系统更智能的巨大机会.不幸的是,由于几个原因,进展受到限制 ...

  9. 12 Best Live Chat Software for Small Business Compared (2019) 最佳的wordpress在线聊天工具推荐插件 来帮你和潜在客户互动

    12 Best Live Chat Software for Small Business Compared (2019)     Did you know that more than 67% of ...

随机推荐

  1. Bzoj1972: [Sdoi2010]猪国杀 题解(大模拟+耐心+细心)

    猪国杀 - 可读版本 https://mubu.com/doc/2707815814591da4 题目可真长,读题都要一个小时. 这道题很多人都说不可做,耗时间,代码量大,于是,本着不做死就不会死的精 ...

  2. while 循环,运算符,字符串的格式化练习

    1.判断下列逻辑语句的结果,一定要自己先分析 1)1 > 1 or 3 < 4 or 4 > 5 and 2 > 1 and 9 > 8 or 7 < 6 Ture ...

  3. panic: time: missing Location in call to Time.In

    docker容器发布go项目出现以下问题: panic: time: missing Location in call to Time.In COPY --from=build /usr/share/ ...

  4. 一文带你了解git

    git简介 什么是git? git是当今世界上最先进的分布式的版本控制系统. 版本控制系统分集中式的和分布式的,集中式的主要代表有CVS.SVN,而Git是分布式版本控制系统的佼佼者. 那什么是集中式 ...

  5. 个人永久性免费-Excel催化剂功能第99波-手机号码归属地批量查询

    高潮过往趋于平静,送上简单的手机号码归属地查询,因接口有数量限制,仅能满足少量数据需求,如有大规模数据却又想免费获得,这就成为无解了,数据有价,且用且珍惜. 业务使用场景 除了日常自带的手机各种管家为 ...

  6. Java常用命令及参数

    Java的基本指令参数 javac [-d 目录|-verbose] file java [-classpath(cp) dir] file jar -zcvf dir file javap [-pr ...

  7. 第二章 jsp数据交互(一)

    JSP如何处理客户端的请求? 解析:通过jsp内置对象 表单数据被提交到了jsp页面! 什么是JSP内置对象(jsp核心)? Java 内置对象 Java  作用域 解析:jsp内置对象是web容器创 ...

  8. spark 源码分析之二十一 -- Task的执行流程

    引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及St ...

  9. 在ABP中灵活使用AutoMapper

    demo地址:ABP.WindowsService 该文章是系列文章 基于.NetCore和ABP框架如何让Windows服务执行Quartz定时作业 的其中一篇. AutoMapper简介 Auto ...

  10. Java编程思想之十七 容器深入研究

    17.1 完整的容器分类方法 17.2 填充容器 import java.util.*; class StringAddress { private String s; public StringAd ...