2017 CCPC秦皇岛 G题 Numbers
DreamGrid has a nonnegative integer . He would like to divide into nonnegative integers and minimizes their bitwise or (i.e. and should be as small as possible).
Input
There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:
The first line contains two integers and ().
It is guaranteed that the sum of the length of does not exceed .
<h4< dd="">Output
For each test case, output an integer denoting the minimum value of their bitwise or.
<h4< dd="">Sample Input
5
3 1
3 2
3 3
10000 5
1244 10
<h4< dd="">Sample Output
3
3
1
2000
125
题解:题意很简单,就是让你把n分成m份,然后让你求这m份按位或的最小值;(注意数据范围,大数模板考虑下Orz)
考虑一个k满足m*2^k <= n < m*2^(k+1)如果使得结果最小,则对于分开后,每个数的最高位(二进制)位置越小,找到一个k后,我们让这m个数字第k位都为一。
然后剩下n-m*2^k(相当于新的n),递归求解即可;
参考代码:
#include <bits/stdc++.h>
using namespace std;
// base and base_digits must be consistent
constexpr int base = ;
constexpr int base_digits = ;
struct bigint
{
vector<int> z;
int sign;
bigint() : sign() {}
bigint(long long v)
{
*this = v;
}
bigint& operator=(long long v)
{
sign = v < ? - : ;
v *= sign;
z.clear();
for(; v > ; v = v / base) z.push_back((int)(v % base));
return *this;
} bigint(const string& s)
{
read(s);
} bigint& operator+=(const bigint& other)
{
if (sign == other.sign)
{
for (int i = , carry = ; i < other.z.size() || carry; ++i)
{
if(i == z.size()) z.push_back();
z[i] += carry + (i < other.z.size() ? other.z[i] : );
carry = z[i] >= base;
if(carry) z[i] -= base;
}
}
else if (other != /* prevent infinite loop */)
{
*this -= -other;
}
return *this;
} friend bigint operator+(bigint a, const bigint& b)
{
return a += b;
} bigint& operator-=(const bigint& other)
{
if (sign == other.sign)
{
if (sign == && *this >= other || sign == - && *this <= other)
{
for (int i = , carry = ; i < other.z.size() || carry; ++i)
{
z[i] -= carry + (i < other.z.size() ? other.z[i] : );
carry = z[i] < ;
if(carry) z[i] += base;
}
trim();
}
else
{
*this = other - *this;
this->sign = -this->sign;
}
}
else *this += -other;
return *this;
} friend bigint operator - (bigint a, const bigint& b)
{
return a -= b;
} bigint& operator*=(int v)
{
if(v < ) sign = -sign, v = -v;
for(int i = , carry = ; i < z.size() || carry; ++i)
{
if(i == z.size()) z.push_back();
long long cur = (long long)z[i] * v + carry;
carry = (int)(cur / base);
z[i] = (int)(cur % base);
}
trim();
return *this;
} bigint operator*(int v) const
{
return bigint(*this) *= v;
} friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
{
int norm = base / (b1.z.back() + );
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size()); for (int i = (int)a.z.size() - ; i >= ; i--)
{
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : ;
int s2 = b.z.size() - < r.z.size() ? r.z[b.z.size() - ] : ;
int d = (int)(((long long)s1 * base + s2) / b.z.back());
r -= b * d;
while(r < ) r += b, --d;
q.z[i] = d;
} q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return {q, r / norm};
} friend bigint sqrt(const bigint& a1)
{
bigint a = a1;
while(a.z.empty() || a.z.size() % == ) a.z.push_back(); int n = a.z.size();
int firstDigit = (int)::sqrt((double)a.z[n - ] * base + a.z[n - ]);
int norm = base / (firstDigit + );
a *= norm;
a *= norm;
while(a.z.empty() || a.z.size() % == ) a.z.push_back(); bigint r = (long long)a.z[n - ] * base + a.z[n - ];
firstDigit = (int)::sqrt((double)a.z[n - ] * base + a.z[n - ]);
int q = firstDigit;
bigint res;
for (int j = n / - ; j >= ; j--)
{
for(;; --q)
{
bigint r1 = (r - (res * * base + q) * q) * base * base + (j > ? (long long)a.z[ * j - ] * base + a.z[ * j - ] : );
if(r1 >= )
{
r = r1;
break;
}
}
res *= base;
res += q;
if(j > )
{
int d1 = res.z.size() + < r.z.size() ? r.z[res.z.size() + ] : ;
int d2 = res.z.size() + < r.z.size() ? r.z[res.z.size() + ] : ;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : ;
q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * ));
}
} res.trim();
return res / norm;
} bigint operator/(const bigint& v) const
{
return divmod(*this, v).first;
} bigint operator%(const bigint& v) const
{
return divmod(*this, v).second;
} bigint& operator/=(int v)
{
if(v < ) sign = -sign, v = -v;
for (int i = (int)z.size() - , rem = ; i >= ; --i)
{
long long cur = z[i] + rem * (long long)base;
z[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
return *this;
} bigint operator/(int v) const
{
return bigint(*this) /= v;
} int operator%(int v) const
{
if(v < ) v = -v;
int m = ;
for(int i = (int)z.size() - ; i >= ; --i) m = (int)((z[i] + m * (long long)base) % v);
return m * sign;
} bigint& operator*=(const bigint& v)
{
*this = *this * v;
return *this;
} bigint& operator/=(const bigint& v)
{
*this = *this / v;
return *this;
} bool operator<(const bigint& v) const
{
if(sign != v.sign) return sign < v.sign;
if(z.size() != v.z.size()) return z.size() * sign < v.z.size() * v.sign;
for(int i = (int)z.size() - ; i >= ; i--)
if(z[i] != v.z[i]) return z[i] * sign < v.z[i] * sign;
return false;
} bool operator>(const bigint& v) const
{
return v < *this;
}
bool operator<=(const bigint& v) const
{
return !(v < *this);
}
bool operator>=(const bigint& v) const
{
return !(*this < v);
}
bool operator==(const bigint& v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint& v) const
{
return *this < v || v < *this;
} void trim()
{
while(!z.empty() && z.back() == ) z.pop_back();
if(z.empty()) sign = ;
} bool isZero() const
{
return z.empty();
} friend bigint operator-(bigint v)
{
if(!v.z.empty()) v.sign = -v.sign;
return v;
} bigint abs() const
{
return sign == ? *this : -*this;
} long long longValue() const
{
long long res = ;
for(int i = (int)z.size() - ; i >= ; i--) res = res * base + z[i];
return res * sign;
} friend bigint gcd(const bigint& a, const bigint& b)
{
return b.isZero() ? a : gcd(b, a % b);
} friend bigint lcm(const bigint& a, const bigint& b)
{
return a / gcd(a, b) * b;
} void read(const string& s)
{
sign = ;
z.clear();
int pos = ;
while(pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if(s[pos] == '-') sign = -sign;
++pos;
}
for(int i = (int)s.size() - ; i >= pos; i -= base_digits)
{
int x = ;
for(int j = max(pos, i - base_digits + ); j <= i; j++) x = x * + s[j] - '';
z.push_back(x);
}
trim();
} friend istream& operator>>(istream& stream, bigint& v)
{
string s;
stream >> s;
v.read(s);
return stream;
} friend ostream& operator<<(ostream& stream, const bigint& v)
{
if(v.sign == -) stream << '-';
stream << (v.z.empty() ? : v.z.back());
for(int i = (int)v.z.size() - ; i >= ; --i)
stream << setw(base_digits) << setfill('') << v.z[i];
return stream;
} static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + );
p[] = ;
for(int i = ; i < p.size(); i++) p[i] = p[i - ] * ;
vector<int> res;
long long cur = ;
int cur_digits = ;
for(int v : a)
{
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while(!res.empty() && res.back() == )
res.pop_back();
return res;
} typedef vector<long long> vll;
static vll karatsubaMultiply(const vll& a, const vll& b)
{
int n = a.size();
vll res(n + n);
if(n <= )
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
} int k = n >> ;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for(int i = ; i < k; i++) a2[i] += a1[i];
for(int i = ; i < k; i++) b2[i] += b1[i]; vll r = karatsubaMultiply(a2, b2);
for(int i = ; i < a1b1.size(); i++) r[i] -= a1b1[i];
for(int i = ; i < a2b2.size(); i++) r[i] -= a2b2[i];
for(int i = ; i < r.size(); i++) res[i + k] += r[i];
for(int i = ; i < a1b1.size(); i++) res[i] += a1b1[i];
for(int i = ; i < a2b2.size(); i++) res[i + n] += a2b2[i];
return res;
} bigint operator*(const bigint& v) const
{
vector<int> a6 = convert_base(this->z, base_digits, );
vector<int> b6 = convert_base(v.z, base_digits, );
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while(a.size() < b.size()) a.push_back();
while(b.size() < a.size()) b.push_back();
while(a.size() & (a.size() - )) a.push_back(), b.push_back();
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = , carry = ; i < c.size(); i++)
{
long long cur = c[i] + carry;
res.z.push_back((int)(cur % ));
carry = (int)(cur / );
}
res.z = convert_base(res.z, , base_digits);
res.trim();
return res;
}
};
/***********************************************
上面为大数模板 核心代码
************************************************/
int main()
{
ios::sync_with_stdio();
cin.tie();
bigint n, m;
int T;
cin >> T;
while(T--)
{
cin >> n >> m;
bigint ans = ;
bigint now = ;
while(now<= n)
{
now = now * ;
}
while(n != )
{
while(now != && now * m > n)
{
now = now / ;
}
if((now * - ) * m < n)
now = now * ;
bigint num = n / now;
if(num > m)
num = m;
n = n - num * now;
ans = ans + now;
}
cout << ans << endl;
}
return ;
}
2017 CCPC秦皇岛 G题 Numbers的更多相关文章
- 2017 CCPC秦皇岛 A题 A Ballon Robot
The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be teams parti ...
- 2017 CCPC秦皇岛 M题 Safest Buildings
PUBG is a multiplayer online battle royale video game. In the game, up to one hundred players parach ...
- 2017 CCPC秦皇岛 L题 One Dimensions Dave
BaoBao is trapped in a one-dimensional maze consisting of grids arranged in a row! The grids are nu ...
- 2017 CCPC秦皇岛 E题 String of CCPC
BaoBao has just found a string of length consisting of 'C' and 'P' in his pocket. As a big fan of ...
- 2017CCPC秦皇岛 G题Numbers&&ZOJ3987【大数】
题意: 给出一个数n,现在要将它分为m个数,这m个数相加起来必须等于n,并且要使得这m个数的或值最小. 思路: 从二进制的角度分析,如果这m个数中有一个数某一位为1,那么最后或起来这一位肯定是为1的, ...
- 2017 CCPC秦皇岛 H题 Prime set
Given an array of integers , we say a set is a prime set of the given array, if and is prime. Ba ...
- 2017 ccpc哈尔滨 A题 Palindrome
2017 ccpc哈尔滨 A题 Palindrome 题意: 给一个串\(T\),计算存在多少子串S满足\(S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)\) 思路: 很明显这里的回文串长 ...
- HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)
题目链接 2017 CCPC Hangzhou Problem E 题意 给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...
- HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)
题目链接 2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块. 分块的时候满足每个块是一个 ...
随机推荐
- 计划任务at和crontab
目标:会看,会写计划任务时间,会制定计划任务 一次性:at yum -y install at #安装at systemctl start atd #启动at服务 systemctl enable a ...
- java线程池的介绍与使用(Executor框架)
1. 先来看一下类构成 public interface Executor { //顶级接口Executor,定义了线程执行的方法 void execute(Runnable command); } ...
- 【科创人·独家】MegaEase左耳朵耗子陈皓复盘创业:第一年盈利被当骗子,线下广阔天地大有可为
[科创人·独家]MegaEase左耳朵耗子陈皓复盘创业:第一年盈利被当骗子,线下广阔天地大有可为 原创: babayage CTO科创圈 与上百位科技创业者共同关注科创人的成长心路. 文末有彩蛋:& ...
- HTML中的表格标签
表格是网页制作中使用最多的工具之一,在制作网页时,使用表格可以更清晰地排列数据.但是在实际制作过程中,表格更多用在网页布局的定位上.很多网页都是以表格布局的.这是因为表格在文本和图像的位置控制方面 ...
- lqb 基础练习 十六进制转八进制 (字符串进行进制转化)
基础练习 十六进制转八进制 时间限制:1.0s 内存限制:512.0MB 问题描述 给定n个十六进制正整数,输出它们对应的八进制数. 输入格式 输入的第一行为一个正整数n (1<=n ...
- hdu 2846 Repository (字典树)
RepositoryTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- nyoj 73-比大小 (Java, 高精度)
73-比大小 内存限制:64MB 时间限制:3000ms 特判: No 通过数:15 提交数:64 难度:3 题目描述: 给你两个很大的数,你能不能判断出他们两个数的大小呢? 比如1234567891 ...
- requests模块使用代理
1.创建try_proxies.py文件import requestsproxies = {"http":"http:117.135.34.6:8060"}he ...
- 力扣(LeetCode)从不订购的客户-数据库题 个人题解
SQL架构 某网站包含两个表,Customers 表和 Orders 表.编写一个 SQL 查询,找出所有从不订购任何东西的客户. Customers 表: +----+-------+ | Id | ...
- HTTP,HTTPS,HTTP2笔记
HTTP 网络协议分层 应用层 -> HTTP FTP 为应用软件提供了很多服务 构建于TCP协议之上 屏蔽网络传输的相关细节 传输层 -> TCP UDP 向用户提供可靠的端对端的服务( ...