DreamGrid has a nonnegative integer . He would like to divide  into nonnegative integers  and minimizes their bitwise or (i.e.  and  should be as small as possible).

Input

There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:

The first line contains two integers  and  ().

It is guaranteed that the sum of the length of  does not exceed .

<h4< dd="">Output

For each test case, output an integer denoting the minimum value of their bitwise or.

<h4< dd="">Sample Input

5
3 1
3 2
3 3
10000 5
1244 10

<h4< dd="">Sample Output

3
3
1
2000
125
题解:题意很简单,就是让你把n分成m份,然后让你求这m份按位或的最小值;(注意数据范围,大数模板考虑下Orz)
考虑一个k满足m*2^k <= n < m*2^(k+1)如果使得结果最小,则对于分开后,每个数的最高位(二进制)位置越小,找到一个k后,我们让这m个数字第k位都为一。
然后剩下n-m*2^k(相当于新的n),递归求解即可;
参考代码:
 #include <bits/stdc++.h>
using namespace std;
// base and base_digits must be consistent
constexpr int base = ;
constexpr int base_digits = ;
struct bigint
{
vector<int> z;
int sign;
bigint() : sign() {}
bigint(long long v)
{
*this = v;
}
bigint& operator=(long long v)
{
sign = v < ? - : ;
v *= sign;
z.clear();
for(; v > ; v = v / base) z.push_back((int)(v % base));
return *this;
} bigint(const string& s)
{
read(s);
} bigint& operator+=(const bigint& other)
{
if (sign == other.sign)
{
for (int i = , carry = ; i < other.z.size() || carry; ++i)
{
if(i == z.size()) z.push_back();
z[i] += carry + (i < other.z.size() ? other.z[i] : );
carry = z[i] >= base;
if(carry) z[i] -= base;
}
}
else if (other != /* prevent infinite loop */)
{
*this -= -other;
}
return *this;
} friend bigint operator+(bigint a, const bigint& b)
{
return a += b;
} bigint& operator-=(const bigint& other)
{
if (sign == other.sign)
{
if (sign == && *this >= other || sign == - && *this <= other)
{
for (int i = , carry = ; i < other.z.size() || carry; ++i)
{
z[i] -= carry + (i < other.z.size() ? other.z[i] : );
carry = z[i] < ;
if(carry) z[i] += base;
}
trim();
}
else
{
*this = other - *this;
this->sign = -this->sign;
}
}
else *this += -other;
return *this;
} friend bigint operator - (bigint a, const bigint& b)
{
return a -= b;
} bigint& operator*=(int v)
{
if(v < ) sign = -sign, v = -v;
for(int i = , carry = ; i < z.size() || carry; ++i)
{
if(i == z.size()) z.push_back();
long long cur = (long long)z[i] * v + carry;
carry = (int)(cur / base);
z[i] = (int)(cur % base);
}
trim();
return *this;
} bigint operator*(int v) const
{
return bigint(*this) *= v;
} friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
{
int norm = base / (b1.z.back() + );
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size()); for (int i = (int)a.z.size() - ; i >= ; i--)
{
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : ;
int s2 = b.z.size() - < r.z.size() ? r.z[b.z.size() - ] : ;
int d = (int)(((long long)s1 * base + s2) / b.z.back());
r -= b * d;
while(r < ) r += b, --d;
q.z[i] = d;
} q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return {q, r / norm};
} friend bigint sqrt(const bigint& a1)
{
bigint a = a1;
while(a.z.empty() || a.z.size() % == ) a.z.push_back(); int n = a.z.size();
int firstDigit = (int)::sqrt((double)a.z[n - ] * base + a.z[n - ]);
int norm = base / (firstDigit + );
a *= norm;
a *= norm;
while(a.z.empty() || a.z.size() % == ) a.z.push_back(); bigint r = (long long)a.z[n - ] * base + a.z[n - ];
firstDigit = (int)::sqrt((double)a.z[n - ] * base + a.z[n - ]);
int q = firstDigit;
bigint res;
for (int j = n / - ; j >= ; j--)
{
for(;; --q)
{
bigint r1 = (r - (res * * base + q) * q) * base * base + (j > ? (long long)a.z[ * j - ] * base + a.z[ * j - ] : );
if(r1 >= )
{
r = r1;
break;
}
}
res *= base;
res += q;
if(j > )
{
int d1 = res.z.size() + < r.z.size() ? r.z[res.z.size() + ] : ;
int d2 = res.z.size() + < r.z.size() ? r.z[res.z.size() + ] : ;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : ;
q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * ));
}
} res.trim();
return res / norm;
} bigint operator/(const bigint& v) const
{
return divmod(*this, v).first;
} bigint operator%(const bigint& v) const
{
return divmod(*this, v).second;
} bigint& operator/=(int v)
{
if(v < ) sign = -sign, v = -v;
for (int i = (int)z.size() - , rem = ; i >= ; --i)
{
long long cur = z[i] + rem * (long long)base;
z[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
return *this;
} bigint operator/(int v) const
{
return bigint(*this) /= v;
} int operator%(int v) const
{
if(v < ) v = -v;
int m = ;
for(int i = (int)z.size() - ; i >= ; --i) m = (int)((z[i] + m * (long long)base) % v);
return m * sign;
} bigint& operator*=(const bigint& v)
{
*this = *this * v;
return *this;
} bigint& operator/=(const bigint& v)
{
*this = *this / v;
return *this;
} bool operator<(const bigint& v) const
{
if(sign != v.sign) return sign < v.sign;
if(z.size() != v.z.size()) return z.size() * sign < v.z.size() * v.sign;
for(int i = (int)z.size() - ; i >= ; i--)
if(z[i] != v.z[i]) return z[i] * sign < v.z[i] * sign;
return false;
} bool operator>(const bigint& v) const
{
return v < *this;
}
bool operator<=(const bigint& v) const
{
return !(v < *this);
}
bool operator>=(const bigint& v) const
{
return !(*this < v);
}
bool operator==(const bigint& v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint& v) const
{
return *this < v || v < *this;
} void trim()
{
while(!z.empty() && z.back() == ) z.pop_back();
if(z.empty()) sign = ;
} bool isZero() const
{
return z.empty();
} friend bigint operator-(bigint v)
{
if(!v.z.empty()) v.sign = -v.sign;
return v;
} bigint abs() const
{
return sign == ? *this : -*this;
} long long longValue() const
{
long long res = ;
for(int i = (int)z.size() - ; i >= ; i--) res = res * base + z[i];
return res * sign;
} friend bigint gcd(const bigint& a, const bigint& b)
{
return b.isZero() ? a : gcd(b, a % b);
} friend bigint lcm(const bigint& a, const bigint& b)
{
return a / gcd(a, b) * b;
} void read(const string& s)
{
sign = ;
z.clear();
int pos = ;
while(pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if(s[pos] == '-') sign = -sign;
++pos;
}
for(int i = (int)s.size() - ; i >= pos; i -= base_digits)
{
int x = ;
for(int j = max(pos, i - base_digits + ); j <= i; j++) x = x * + s[j] - '';
z.push_back(x);
}
trim();
} friend istream& operator>>(istream& stream, bigint& v)
{
string s;
stream >> s;
v.read(s);
return stream;
} friend ostream& operator<<(ostream& stream, const bigint& v)
{
if(v.sign == -) stream << '-';
stream << (v.z.empty() ? : v.z.back());
for(int i = (int)v.z.size() - ; i >= ; --i)
stream << setw(base_digits) << setfill('') << v.z[i];
return stream;
} static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + );
p[] = ;
for(int i = ; i < p.size(); i++) p[i] = p[i - ] * ;
vector<int> res;
long long cur = ;
int cur_digits = ;
for(int v : a)
{
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while(!res.empty() && res.back() == )
res.pop_back();
return res;
} typedef vector<long long> vll;
static vll karatsubaMultiply(const vll& a, const vll& b)
{
int n = a.size();
vll res(n + n);
if(n <= )
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
} int k = n >> ;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for(int i = ; i < k; i++) a2[i] += a1[i];
for(int i = ; i < k; i++) b2[i] += b1[i]; vll r = karatsubaMultiply(a2, b2);
for(int i = ; i < a1b1.size(); i++) r[i] -= a1b1[i];
for(int i = ; i < a2b2.size(); i++) r[i] -= a2b2[i];
for(int i = ; i < r.size(); i++) res[i + k] += r[i];
for(int i = ; i < a1b1.size(); i++) res[i] += a1b1[i];
for(int i = ; i < a2b2.size(); i++) res[i + n] += a2b2[i];
return res;
} bigint operator*(const bigint& v) const
{
vector<int> a6 = convert_base(this->z, base_digits, );
vector<int> b6 = convert_base(v.z, base_digits, );
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while(a.size() < b.size()) a.push_back();
while(b.size() < a.size()) b.push_back();
while(a.size() & (a.size() - )) a.push_back(), b.push_back();
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = , carry = ; i < c.size(); i++)
{
long long cur = c[i] + carry;
res.z.push_back((int)(cur % ));
carry = (int)(cur / );
}
res.z = convert_base(res.z, , base_digits);
res.trim();
return res;
}
};
/***********************************************
上面为大数模板 核心代码
************************************************/
int main()
{
ios::sync_with_stdio();
cin.tie();
bigint n, m;
int T;
cin >> T;
while(T--)
{
cin >> n >> m;
bigint ans = ;
bigint now = ;
while(now<= n)
{
now = now * ;
}
while(n != )
{
while(now != && now * m > n)
{
now = now / ;
}
if((now * - ) * m < n)
now = now * ;
bigint num = n / now;
if(num > m)
num = m;
n = n - num * now;
ans = ans + now;
}
cout << ans << endl;
}
return ;
}
  

2017 CCPC秦皇岛 G题 Numbers的更多相关文章

  1. 2017 CCPC秦皇岛 A题 A Ballon Robot

    The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be  teams parti ...

  2. 2017 CCPC秦皇岛 M题 Safest Buildings

    PUBG is a multiplayer online battle royale video game. In the game, up to one hundred players parach ...

  3. 2017 CCPC秦皇岛 L题 One Dimensions Dave

    BaoBao is trapped in a one-dimensional maze consisting of  grids arranged in a row! The grids are nu ...

  4. 2017 CCPC秦皇岛 E题 String of CCPC

    BaoBao has just found a string  of length  consisting of 'C' and 'P' in his pocket. As a big fan of ...

  5. 2017CCPC秦皇岛 G题Numbers&&ZOJ3987【大数】

    题意: 给出一个数n,现在要将它分为m个数,这m个数相加起来必须等于n,并且要使得这m个数的或值最小. 思路: 从二进制的角度分析,如果这m个数中有一个数某一位为1,那么最后或起来这一位肯定是为1的, ...

  6. 2017 CCPC秦皇岛 H题 Prime set

    Given an array of  integers , we say a set  is a prime set of the given array, if  and  is prime. Ba ...

  7. 2017 ccpc哈尔滨 A题 Palindrome

    2017 ccpc哈尔滨 A题 Palindrome 题意: 给一个串\(T\),计算存在多少子串S满足\(S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)\) 思路: 很明显这里的回文串长 ...

  8. HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)

    题目链接  2017 CCPC Hangzhou  Problem E 题意  给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...

  9. HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)

    题目链接  2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块.    分块的时候满足每个块是一个 ...

随机推荐

  1. 前后端分离,我怎么就选择了 Spring Boot + Vue 技术栈?

    前两天又有小伙伴私信松哥,问题还是职业规划,Java 技术栈路线这种,实际上对于这一类问题我经常不太敢回答,每个人的情况都不太一样,而小伙伴也很少详细介绍自己的情况,大都是一两句话就把问题抛出来了,啥 ...

  2. nyoj 366 D的小L (全排列)

    D的小L 时间限制:4000 ms  |  内存限制:65535 KB 难度:2   描述       一天TC的匡匡找ACM的小L玩三国杀,但是这会小L忙着哩,不想和匡匡玩但又怕匡匡生气,这时小L给 ...

  3. React组件间的通讯

    组件化开发应该是React核心功能之一,组件之间的通讯也是我们做React开发必要掌握的技能.接下来我们将从组件之间的关系来分解组件间如何传递数据. 1.父组件向子组件传递数据 通讯是单向的,数据必须 ...

  4. 力扣(LeetCode)平方数之和 个人题解

    给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c. 示例1: 输入: 5 输出: True 解释: 1 * 1 + 2 * 2 = 5 示例2: 输入: 3 ...

  5. ZeroC ICE的远程调用框架 ASM与defaultServant,ServantLocator

    ASM与defaultServant,ServantLocator都是与调用调度(Dispatch)相关的. ASM是ServantManager中的一张二维表_servantMapMap,默认Ser ...

  6. 十一、设备初始化(ADK4.0)

    1.1     首先初始化连接库 sinkConnectionInit();à ConnectionInitEx2();  theCm.task.handler = connectionBluesta ...

  7. MyEclipse使用总结

    0.快捷键 ================================================================================ 编辑: Ctrl+Shif ...

  8. 万恶之源-python内容的进化

    1.整数: ​ int--计算和比较 ​ 整数可以进行的操作: ​ bit_length().计算整数在内存中占用的二进制码的长度 2.布尔值 ​ bool 布尔值--用于条件使用 ​ True 真 ...

  9. Java实现AES加密解密

    之前常用两种加密算法:Base64和Md5,前者容易破解,后者不可逆. AES采用对称加密方式,破解难度非常大,在可逆的基础上,能很好的保证数据的安全性. 这里介绍Java中实现AES加密算法的加密与 ...

  10. Python文件和数据格式化(教程)

    文件是一个存储在副主存储器的数据序列,可包含任何数据内容. 概念上,文件是数据的集合和抽象,类似的,函数是程序的集合和抽象. 用文件形式组织和表达数据更有效也更加灵活. 文件包括两种形式,文本文件和二 ...