2017 CCPC秦皇岛 G题 Numbers
DreamGrid has a nonnegative integer . He would like to divide into nonnegative integers and minimizes their bitwise or (i.e. and should be as small as possible).
Input
There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:
The first line contains two integers and ().
It is guaranteed that the sum of the length of does not exceed .
<h4< dd="">Output
For each test case, output an integer denoting the minimum value of their bitwise or.
<h4< dd="">Sample Input
5
3 1
3 2
3 3
10000 5
1244 10
<h4< dd="">Sample Output
3
3
1
2000
125
题解:题意很简单,就是让你把n分成m份,然后让你求这m份按位或的最小值;(注意数据范围,大数模板考虑下Orz)
考虑一个k满足m*2^k <= n < m*2^(k+1)如果使得结果最小,则对于分开后,每个数的最高位(二进制)位置越小,找到一个k后,我们让这m个数字第k位都为一。
然后剩下n-m*2^k(相当于新的n),递归求解即可;
参考代码:
#include <bits/stdc++.h>
using namespace std;
// base and base_digits must be consistent
constexpr int base = ;
constexpr int base_digits = ;
struct bigint
{
vector<int> z;
int sign;
bigint() : sign() {}
bigint(long long v)
{
*this = v;
}
bigint& operator=(long long v)
{
sign = v < ? - : ;
v *= sign;
z.clear();
for(; v > ; v = v / base) z.push_back((int)(v % base));
return *this;
} bigint(const string& s)
{
read(s);
} bigint& operator+=(const bigint& other)
{
if (sign == other.sign)
{
for (int i = , carry = ; i < other.z.size() || carry; ++i)
{
if(i == z.size()) z.push_back();
z[i] += carry + (i < other.z.size() ? other.z[i] : );
carry = z[i] >= base;
if(carry) z[i] -= base;
}
}
else if (other != /* prevent infinite loop */)
{
*this -= -other;
}
return *this;
} friend bigint operator+(bigint a, const bigint& b)
{
return a += b;
} bigint& operator-=(const bigint& other)
{
if (sign == other.sign)
{
if (sign == && *this >= other || sign == - && *this <= other)
{
for (int i = , carry = ; i < other.z.size() || carry; ++i)
{
z[i] -= carry + (i < other.z.size() ? other.z[i] : );
carry = z[i] < ;
if(carry) z[i] += base;
}
trim();
}
else
{
*this = other - *this;
this->sign = -this->sign;
}
}
else *this += -other;
return *this;
} friend bigint operator - (bigint a, const bigint& b)
{
return a -= b;
} bigint& operator*=(int v)
{
if(v < ) sign = -sign, v = -v;
for(int i = , carry = ; i < z.size() || carry; ++i)
{
if(i == z.size()) z.push_back();
long long cur = (long long)z[i] * v + carry;
carry = (int)(cur / base);
z[i] = (int)(cur % base);
}
trim();
return *this;
} bigint operator*(int v) const
{
return bigint(*this) *= v;
} friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
{
int norm = base / (b1.z.back() + );
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size()); for (int i = (int)a.z.size() - ; i >= ; i--)
{
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : ;
int s2 = b.z.size() - < r.z.size() ? r.z[b.z.size() - ] : ;
int d = (int)(((long long)s1 * base + s2) / b.z.back());
r -= b * d;
while(r < ) r += b, --d;
q.z[i] = d;
} q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return {q, r / norm};
} friend bigint sqrt(const bigint& a1)
{
bigint a = a1;
while(a.z.empty() || a.z.size() % == ) a.z.push_back(); int n = a.z.size();
int firstDigit = (int)::sqrt((double)a.z[n - ] * base + a.z[n - ]);
int norm = base / (firstDigit + );
a *= norm;
a *= norm;
while(a.z.empty() || a.z.size() % == ) a.z.push_back(); bigint r = (long long)a.z[n - ] * base + a.z[n - ];
firstDigit = (int)::sqrt((double)a.z[n - ] * base + a.z[n - ]);
int q = firstDigit;
bigint res;
for (int j = n / - ; j >= ; j--)
{
for(;; --q)
{
bigint r1 = (r - (res * * base + q) * q) * base * base + (j > ? (long long)a.z[ * j - ] * base + a.z[ * j - ] : );
if(r1 >= )
{
r = r1;
break;
}
}
res *= base;
res += q;
if(j > )
{
int d1 = res.z.size() + < r.z.size() ? r.z[res.z.size() + ] : ;
int d2 = res.z.size() + < r.z.size() ? r.z[res.z.size() + ] : ;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : ;
q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * ));
}
} res.trim();
return res / norm;
} bigint operator/(const bigint& v) const
{
return divmod(*this, v).first;
} bigint operator%(const bigint& v) const
{
return divmod(*this, v).second;
} bigint& operator/=(int v)
{
if(v < ) sign = -sign, v = -v;
for (int i = (int)z.size() - , rem = ; i >= ; --i)
{
long long cur = z[i] + rem * (long long)base;
z[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
return *this;
} bigint operator/(int v) const
{
return bigint(*this) /= v;
} int operator%(int v) const
{
if(v < ) v = -v;
int m = ;
for(int i = (int)z.size() - ; i >= ; --i) m = (int)((z[i] + m * (long long)base) % v);
return m * sign;
} bigint& operator*=(const bigint& v)
{
*this = *this * v;
return *this;
} bigint& operator/=(const bigint& v)
{
*this = *this / v;
return *this;
} bool operator<(const bigint& v) const
{
if(sign != v.sign) return sign < v.sign;
if(z.size() != v.z.size()) return z.size() * sign < v.z.size() * v.sign;
for(int i = (int)z.size() - ; i >= ; i--)
if(z[i] != v.z[i]) return z[i] * sign < v.z[i] * sign;
return false;
} bool operator>(const bigint& v) const
{
return v < *this;
}
bool operator<=(const bigint& v) const
{
return !(v < *this);
}
bool operator>=(const bigint& v) const
{
return !(*this < v);
}
bool operator==(const bigint& v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint& v) const
{
return *this < v || v < *this;
} void trim()
{
while(!z.empty() && z.back() == ) z.pop_back();
if(z.empty()) sign = ;
} bool isZero() const
{
return z.empty();
} friend bigint operator-(bigint v)
{
if(!v.z.empty()) v.sign = -v.sign;
return v;
} bigint abs() const
{
return sign == ? *this : -*this;
} long long longValue() const
{
long long res = ;
for(int i = (int)z.size() - ; i >= ; i--) res = res * base + z[i];
return res * sign;
} friend bigint gcd(const bigint& a, const bigint& b)
{
return b.isZero() ? a : gcd(b, a % b);
} friend bigint lcm(const bigint& a, const bigint& b)
{
return a / gcd(a, b) * b;
} void read(const string& s)
{
sign = ;
z.clear();
int pos = ;
while(pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if(s[pos] == '-') sign = -sign;
++pos;
}
for(int i = (int)s.size() - ; i >= pos; i -= base_digits)
{
int x = ;
for(int j = max(pos, i - base_digits + ); j <= i; j++) x = x * + s[j] - '';
z.push_back(x);
}
trim();
} friend istream& operator>>(istream& stream, bigint& v)
{
string s;
stream >> s;
v.read(s);
return stream;
} friend ostream& operator<<(ostream& stream, const bigint& v)
{
if(v.sign == -) stream << '-';
stream << (v.z.empty() ? : v.z.back());
for(int i = (int)v.z.size() - ; i >= ; --i)
stream << setw(base_digits) << setfill('') << v.z[i];
return stream;
} static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + );
p[] = ;
for(int i = ; i < p.size(); i++) p[i] = p[i - ] * ;
vector<int> res;
long long cur = ;
int cur_digits = ;
for(int v : a)
{
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while(!res.empty() && res.back() == )
res.pop_back();
return res;
} typedef vector<long long> vll;
static vll karatsubaMultiply(const vll& a, const vll& b)
{
int n = a.size();
vll res(n + n);
if(n <= )
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
} int k = n >> ;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for(int i = ; i < k; i++) a2[i] += a1[i];
for(int i = ; i < k; i++) b2[i] += b1[i]; vll r = karatsubaMultiply(a2, b2);
for(int i = ; i < a1b1.size(); i++) r[i] -= a1b1[i];
for(int i = ; i < a2b2.size(); i++) r[i] -= a2b2[i];
for(int i = ; i < r.size(); i++) res[i + k] += r[i];
for(int i = ; i < a1b1.size(); i++) res[i] += a1b1[i];
for(int i = ; i < a2b2.size(); i++) res[i + n] += a2b2[i];
return res;
} bigint operator*(const bigint& v) const
{
vector<int> a6 = convert_base(this->z, base_digits, );
vector<int> b6 = convert_base(v.z, base_digits, );
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while(a.size() < b.size()) a.push_back();
while(b.size() < a.size()) b.push_back();
while(a.size() & (a.size() - )) a.push_back(), b.push_back();
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = , carry = ; i < c.size(); i++)
{
long long cur = c[i] + carry;
res.z.push_back((int)(cur % ));
carry = (int)(cur / );
}
res.z = convert_base(res.z, , base_digits);
res.trim();
return res;
}
};
/***********************************************
上面为大数模板 核心代码
************************************************/
int main()
{
ios::sync_with_stdio();
cin.tie();
bigint n, m;
int T;
cin >> T;
while(T--)
{
cin >> n >> m;
bigint ans = ;
bigint now = ;
while(now<= n)
{
now = now * ;
}
while(n != )
{
while(now != && now * m > n)
{
now = now / ;
}
if((now * - ) * m < n)
now = now * ;
bigint num = n / now;
if(num > m)
num = m;
n = n - num * now;
ans = ans + now;
}
cout << ans << endl;
}
return ;
}
2017 CCPC秦皇岛 G题 Numbers的更多相关文章
- 2017 CCPC秦皇岛 A题 A Ballon Robot
The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be teams parti ...
- 2017 CCPC秦皇岛 M题 Safest Buildings
PUBG is a multiplayer online battle royale video game. In the game, up to one hundred players parach ...
- 2017 CCPC秦皇岛 L题 One Dimensions Dave
BaoBao is trapped in a one-dimensional maze consisting of grids arranged in a row! The grids are nu ...
- 2017 CCPC秦皇岛 E题 String of CCPC
BaoBao has just found a string of length consisting of 'C' and 'P' in his pocket. As a big fan of ...
- 2017CCPC秦皇岛 G题Numbers&&ZOJ3987【大数】
题意: 给出一个数n,现在要将它分为m个数,这m个数相加起来必须等于n,并且要使得这m个数的或值最小. 思路: 从二进制的角度分析,如果这m个数中有一个数某一位为1,那么最后或起来这一位肯定是为1的, ...
- 2017 CCPC秦皇岛 H题 Prime set
Given an array of integers , we say a set is a prime set of the given array, if and is prime. Ba ...
- 2017 ccpc哈尔滨 A题 Palindrome
2017 ccpc哈尔滨 A题 Palindrome 题意: 给一个串\(T\),计算存在多少子串S满足\(S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)\) 思路: 很明显这里的回文串长 ...
- HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)
题目链接 2017 CCPC Hangzhou Problem E 题意 给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...
- HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)
题目链接 2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块. 分块的时候满足每个块是一个 ...
随机推荐
- 008.Kubernetes二进制部署Nginx实现高可用
一 Nginx代理实现kube-apiserver高可用 1.1 Nginx实现高可用 基于 nginx 代理的 kube-apiserver 高可用方案. 控制节点的 kube-controller ...
- kubernetes的ingress-nginx
这是一篇学习记录.记录kubernetes集群中如何将jenkins服务通过域名接入外部.由于是测试环境,域名是自定义的,解析写在/etc/hosts和自己本地的hosts中. 部署图: 一.部署后端 ...
- etcd-operator快速入门完全教程
Operator是指一类基于Kubernetes自定义资源对象(CRD)和控制器(Controller)的云原生拓展服务,其中CRD定义了每个operator所创建和管理的自定义资源对象,Contro ...
- [LC]876题 Middle of the Linked List (链表的中间结点)(链表)
①中文题目 给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5]输出:此列表中的结点 3 (序列化形式 ...
- Python 常用模块系列学习(3)--configparser module
configpaser 模块----用于生成和修改常见配置文档 1. config 对象的创建: import configparser #导入模块 config = configparser.Con ...
- 深度剖析Javascript执行环境、作用域链
一.执行环境 执行环境(也叫做执行上下文,Execution Context)是Javascript中最为重要的一个概念.执行环境定义了变量或函数有权访问其他数据,决定了它们各自的行为.每个执行环境都 ...
- C. Present(二分 + 扫描线)
题目链接:http://codeforces.com/contest/460/problem/C 题意: n盆花,浇k次水, 每次可使花高度 + 1, 每次可浇相邻的w盆,ai 表示 i-th盆花 的 ...
- [apue] 神奇的 Solaris pipe
说到 pipe 大家可能都不陌生,经典的pipe调用配合fork进行父子进程通讯,简直就是Unix程序的标配. 然而Solaris上的pipe却和Solaris一样是个奇葩(虽然Solaris前途黯淡 ...
- 微信小程序 + thinkjs + mongoDB 实现简单的前后端交互
说明:这段时间跟老师学习了一下mongodb数据库,这次也是第一次搭建后台服务,出了不少差错,特此来复盘一下,非常感谢对我提供帮助的同学~ 一.使用 thinkjs + mongodb 创建后台服务 ...
- 基于SDF渲染字体
18号字体 18号字体放大15倍 基于sdf渲染字体放大15倍 相比常规的渲染方式,基于SDF渲染文字可无限放大并保持清晰,几乎没有开销就可实现描边,发光,抗锯齿等效果.且它只需要很小的纹理缓存SDF ...