4563: [Haoi2016]放棋子

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 440  Solved: 285
[Submit][Status][Discuss]

Description

给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在
这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子
的限制,求有多少种方案。
 

Input

第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,输入格式参考样例
 

Output

一个整数,即合法的方案数。

Sample Input

2
0 1
1 0

Sample Output

1
  这道题竟然考的是高精度,吓到我了……
  一开始没读到数据范围还以为是状压裸题,然后一看到N<=200,吓一跳,然后开始琢磨动归方程,于是乎,一开始就错了的我走上了一条不归路。
  最后实在没辙,看了一眼题解,好吧,我输了。
  这道题我们可以分析为错排问题:一共 1~n n个数,对于任意数x都不在第x个位置上有多少方案数。
  为什么这么说呢?我们可以注意到,既然每一行每一列有且只有一个障碍,那么,每一行障碍的位置对于答案没有任何实际影响,如果我们按照每一行障碍的位置对行进行排序的话就转化成了第i行的棋子不能出现在第i个位置的问题,也就是我们上面说的错排问题了。
  那么错排问题的公式是什么呢?
    f[i]=f[i-1]*(i-1)+f[i-2]*(i-1)
    原理:

      第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
      第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有f(n-2)种方法;⑵第k    个元素不把它放到位置n,这时,对于这n-1个元素,有f(n-1)种方法。(摘自百度百科)
  还是挺好玩的。
  然后,就是传统的高精度了呗。

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 10000
using namespace std;
int n,p=;
struct no
{
int a[N],l;
}f[],c;
no get(int x)
{
no aa;
aa.l=;
aa.a[]=x;
return aa;
}
no jia(no a,no b)
{
memset(c.a,,sizeof(c.a));c.l=;
for(int i=;i<=max(a.l,b.l)+;i++)
{
c.a[i]+=a.a[i]+b.a[i];
c.a[i+]+=c.a[i]/p;
c.a[i]%=p;
}
for(int i=max(a.l,b.l)+;;i--)
{
if(c.a[i])
{
c.l=i;
break;
}
}
return c;
}
no cheng(no a,no b)
{
memset(c.a,,sizeof(c.a));c.l=;
for(int i=;i<=a.l;i++)
{
for(int j=,to=i;j<=b.l;j++,to++)
{
c.a[to]+=a.a[i]*b.a[j];
c.a[to+]+=c.a[to]/p;
c.a[to]%=p;
}
}
for(int i=a.l+b.l+;;i--)
{
if(c.a[i])
{
c.l=i;
break;
}
}
return c;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
}
}
f[].a[]=,f[].l=;
f[].a[]=,f[].l=;
for(int i=;i<=n;i++)
{
f[i]=cheng(get(i-),jia(f[i-],f[i-]));
}
printf("%d",f[n].a[f[n].l]);
for(int i=f[n].l-;i>=;i--)
{
printf("%04d",f[n].a[i]);
}
return ;
}

[Haoi2016]放棋子 题解的更多相关文章

  1. BZOJ4563:[HAOI2016]放棋子——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4563 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列 ...

  2. 【BZOJ4563】[Haoi2016]放棋子 错排+高精度

    [BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...

  3. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  4. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  5. BZOJ4563: [Haoi2016]放棋子

    Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在 这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行 ...

  6. [HAOI2016] 放棋子及错排问题

    题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...

  7. BZOJ 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 389  Solved: 248[Submit][Status][Discuss] Descriptio ...

  8. BZOJ——T 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status][Discuss] Descriptio ...

  9. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

随机推荐

  1. WPF 绑定到静态属性(4.5)

    1. 声明静态事件 /// <summary> /// 静态属性通知 /// </summary> public static event EventHandler<Pr ...

  2. 备份一个个人用的WPF万能转换器

    public class CommonCoverter : IValueConverter { /// 转换器参数语法: key1,value1 key2,value2 ... [other,defu ...

  3. Android 9.0 Dialog不显示

    Tester报了一个bug,大概如下: 页面:Activity1 dialog1(半透明遮罩样式) Activity2 dialog2 场景:Activity1弹出dialog1,dialog1弹出a ...

  4. Visual Studio 2017报表RDLC设计器与工具箱中Report Viewer问题

    原文:VS2017入门 RDLC入门之01 本系列所有内容为网络收集转载,版权为原作者所有. VS2017初始安装后和VS2015一样,都没有ReportDesigner/ReportViewer R ...

  5. Docker笔记01-发布一个dotnetcore应用

    OS:Widows 10 IDE: VS2017 Docker:Docker Desktop for Windows Windows下安装Docker需要先启用Hyper-v 在Windows 容器的 ...

  6. 利用开源软件 Hugin 实现照片的景深合成,使用开源软件 enfuse 做照片的曝光合成

    http://blog.csdn.net/liyuanbhu/article/details/53573847 http://blog.csdn.net/liyuanbhu/article/detai ...

  7. Solr Principal - 工作原理/机制

    From http://lucene.apache.org/solr/guide/7_1/overview-of-documents-fields-and-schema-design.html The ...

  8. window下搭建qt开发环境编译、引用ace

    工作中经常用到ace.tao等,在windwo下的c++开发工具基本上就是vs20xx这些工具,还有些就是类似编辑工具例如:source insight等,前者比较大,打开.编译运行比较慢,二期针对a ...

  9. getch(),getche(),getchar()的区别

    先说基本区别. (1) getch()和getche()函数     这两个函数都是从键盘上读入一个字符.其调用格式为:      getch();      getche();     两者的区别是 ...

  10. 【canvas】基础练习三 图片

    [canvas]Demo1 drawImage drawImage(img,x,y); <!DOCTYPE html> <html lang="en"> & ...