基于ST表的RMQ
RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n))查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决。
问题:给出n个数ai,让你快速查询某个区间的的最值。
算法分析:
(1)预处理
这个算法就是基于DP和位运算符,我们用 dp[i][j] 表示从第 i 位开始,到第 i + 2^j -1 位的最大值或者最小值。
那么我求dp[i][j的时候可以把它分成两部分,第一部分从 i 到 i + 2 ^( j-1 ) - 1 ,第二部分从 i + 2 ^( j-1 ) 到 i + 2^j - 1 次方,其实我们知道二进制数后一个是前一个的二倍,那么可以把 i ~i + 2^j 这个区间 通过2^(j-1) 分成相等的两部分, 那么转移方程很容易就写出来了。
转移方程:dp [ i ] [ j ] = max ( dp [ i ] [ j - 1 ] , dp [ i + ( 1 << ( j - 1 ) ) ] [ j - 1 ] )
以求区间最小值为例
void RMQ()
{
for(int i=1;i<=N;i++)
dp[i][0]=a[i]; //初始化, dp[i][0]就表示第i个数字本身
for(int j = 1; (1<<j) <= N; j++)
for(int i = 1; i+(1<<j)-1 <= N; i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
}
需要注意的是循环的顺序,我们发现外层是j,内层为i
(2)查询
假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)
因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{ F[i , k], F[ j - 2 ^ k + 1, k] }(可用数学证明,在此不加以论述)
eg. 要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);
需要注意一个地方,就是<<运算符和+-运算符的优先级
比如这个表达式:5 - 1 << 2是多少?
答案是:4 * 2 * 2 = 16。所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1
基于ST表的RMQ的更多相关文章
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- ST表解决RMQ问题
RMQ问题: RMQ(Range Minimum/Maximum Query),区间最值查询.对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间 ...
- ST表 求 RMQ(区间最值)
RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...
- ST表(离线RMQ)
离线RAQ时,预处理为O(n*lgn),查询为O(1)的算法,比较有意思的一种算法 放个模板在这可以随时看 //ST表(离线) //预处理 O(n*lgn) , 查询 O(1) #include &l ...
- ST函数(ST表)RMQ O(1)查询 离线
ST算法是基于倍增的动态规划算法. #include<iostream> #include<cstdio> #include<cstdlib> #include&l ...
- st表、RMQ和LCA
int lca(int x,int y) { if(de[x]<de[y]) swap(x,y); int d=de[x]-de[y]; for(int i=log2(d);i>=0;i- ...
- 基于稀疏表(Sparse Table)的RMQ(区间最值问题)
在RMQ的其他实现方法中,有一种叫做ST的算法比较常见. [构建] dp[i][j]表示的是从i起连续的2j个数xi,xi+1,xi+2,...xi+2j-1( 区间为[i,i+2j-1] )的最值. ...
- 数据结构进阶:ST表
简介 ST 表是用于解决 可重复贡献问题 的数据结构. 什么是可重复贡献问题? 可重复贡献问题 是指对于运算 \(\operatorname{opt}\) ,满足 \(x\operatorname ...
- BZOJ3230 相似子串[后缀数组+二分+st表]
BZOJ3230 相似子串 给一个串,查询排名i和j的子串longest common suffix和longest common prefix 思路其实还是蛮好想的,就是码起来有点恶心.可以发现后缀 ...
随机推荐
- CS系统中分页控件的制作
需求:在一个已有的CS项目(ERP中),给所有的列表加上分页功能. 分页的几个概念: 总记录数 totalCount (只有知道了总记录数,才知道有多少页) 每页记录数 pageSize (根据总 ...
- 手把手教你用C语言编写一个哈希表
原文链接:https://www.swack.cn/wiki/001558681974020669b912b0c994e7090649ac4846e80b2000/001572849111298ae3 ...
- Spring Boot GraphQL 实战 03_分页、全局异常处理和异步加载
hello,大家好,我是小黑,又和大家见面啦~ 今天我们来继续学习 Spring Boot GraphQL 实战,我们使用的框架是 https://github.com/graphql-java-ki ...
- 攻防世界_MISC进阶区_Get-the-key.txt(详细)
攻防世界MISC进阶之Get-the-key.txt 啥话也不说,咱们直接看题吧! 首先下载附件看到一个压缩包: 我们直接解压,看到一个文件,也没有后缀名,先用 file 看一下文件属性: 发现是是L ...
- Nginx 实现动态负载均衡(Nginx-1.10.1 + Consul v0.6.4)
一直也没有找到合适的类似Socat + Haproxy 的组合能用在Nginx,后来发现了Nginx的几个模块,但是也存在各种不足. 而且Nginx 在大流量的情况下nginx -s reload 是 ...
- linux服务开机自启动&注册系统服务
首先先看下linux系统开机启动顺序,如下图 对,要解决Linux CentOS 和 Red Hat Linux 系统中设置服务自启动有两种方式,就是从图中圈出的两个步骤下手. 一.修改 /etc/r ...
- 【Spring】创建一个Spring的入门程序
3.创建一个Spring的入门程序 简单记录 - Java EE企业级应用开发教程(Spring+Spring MVC+MyBatis)- Spring的基本应用 Spring与Spring MVC的 ...
- 【MySQL】Last_SQL_Errno: 1594Relay log read failure: Could not parse relay log event entry...问题总结处理
备库报错: Last_SQL_Errno: 1594 Last_SQL_Error: Relay log read failure: Could not parse relay log event e ...
- PyTorch 于 JupyterLab 的环境准备
PyTorch 是目前主流的深度学习框架之一,而 JupyterLab 是基于 Web 的交互式笔记本环境.于 JupyterLab 我们可以边记笔记的同时.边执行 PyTorch 代码,便于自己学习 ...
- 如何在C#中使用MSMQ
MSMQ (Microsoft消息队列)是Windows中默认可用的消息队列.作为跨计算机系统发送和接收消息的可靠方法,MSMQ提供了一个可伸缩.线程安全.简单和使用方便的队列,同时为你提供了在Win ...