RSA公钥文件解密密文的原理分析

前言

最近在学习 RSA 加解密过程中遇到一个这样的难题:假设已知 publickey 公钥文件和加密后的密文 flag ,如何对其密文进行解密,转换成明文~~

分析

对于 rsa 算法的公钥与私钥的产生,我们可以了解到以下产生原理:

公钥与私钥的产生

消息加密

首先需要将消息 m 以一个双方约定好的格式转化为一个小于 N,且与 N 互质的整数 n。如果消息太长,可以将消息分为几段,这也就是我们所说的块加密,后对于每一部分利用如下公式加密:

消息解密

利用密钥 d 进行解密。

我们可以知道, RSA 公钥主要有两个信息:模数(modulus)和指数(exponent),也就是我们所说的 N 和 e 。只要有了这两个信息,我们便可以生成公钥,然后使用 rsa 库对数据进行加密~

脚本实现如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rsa key = rsa.PublicKey(modulus, exponent)
print key

这时候我们有如下的publickey.pem文件:

-----BEGIN PUBLIC KEY-----
MDwwDQYJKoZIhvcNAQEBBQADKwAwKAIhAMJjauXD2OQ/+5erCQKPGqxsC/bNPXDr
yigb/+l/vjDdAgMBAAE=
-----END PUBLIC KEY-----

现在我们需要做的就是从这段字符串中提出模数和指数。

首先我们得知道 pem 文件是什么?

简单来讲, pem 文件这种格式就是用于 ASCII(Base64) 编码的各种 X.509 v3 证书。

文件开始由一行 -----BEGIN PUBLIC KEY----- 开始,由 -----END PUBLIC KEY----- 结束

pem 类型的数据除去 begin 和 end 之外的内容,要根据 base64 编码解码后,得到的数据需要进行增加或裁剪特殊字符-、 \n 、 \r 、 begin 信息、 end 信息等。

这里有张图片很清楚的解释了这个问题~~

既然我们现在已经知道了 pem 这种文件格式,并且也知道其中的数据内容,我们该如何对这种文件内容进行解密呢?

我们可以做以下尝试 Base64 解码尝试:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import base64 pubkey = "MDwwDQYJKoZIhvcNAQEBBQADKwAwKAIhAMJjauXD2OQ/+5erCQKPGqxsC/bNPXDr
yigb/+l/vjDdAgMBAAE="
b64_str = base64.b64decode(pubkey)
print b64_str
print len(b64_str)

解码以后如下:

很明显,我们解出来一段乱码,我们尝试把这串乱码转换成 16 进制,这里我们用的是 python 自带的 binascii 库进行解码

发现结尾是 \x01\x00\x01 , 10001 ,看多了 rsa 的公钥,就知道这个数,多半是 exponent 了。

再看看解码后的长度为 162 ,我们找到偏移表,发现模数的偏移位置是 159,长度是 3 ,加起来正好162

那么说明这段字符串就是指数和模数加密过后的结果,甚至比一般的 pem 文件中的信息还要简单~

按照这个思路,对照偏移表我们找出指数 e 和模数 N :

# /usr/bin/python
# -*- coding: utf-8 -*- import base64 def str2key(s):
# 对字符串解码
b_str = base64.b64decode(s) if len(b_str) < 162:
return False hex_str = '' # 按位转换成16进制
for x in b_str:
h = hex(ord(x))[2:]
h = h.rjust(2, '0')
hex_str += h # 找到模数和指数的开头结束位置
m_start = 29 * 2
e_start = 159 * 2
m_len = 128 * 2
e_len = 3 * 2 modulus = hex_str[m_start:m_start + m_len]
exponent = hex_str[e_start:e_start + e_len] return modulus,exponent if __name__ == "__main__": pubkey = "MDwwDQYJKoZIhvcNAQEBBQADKwAwKAIhAMJjauXD2OQ/+5erCQKPGqxsC/bNPXDr
yigb/+l/vjDdAgMBAAE="
key = str2key(pubkey)
print key

结果如下:

('C2636AE5C3D8E43FFB97AB09028F1AAC6C0BF6CD3D70EBCA281BFFE97FBE30DD', '010001')

这个即为我们求出来模数 N 和指数 e 。

当然我们也可以用一些比较方便的工具, Kali Linux 里面自带了 openssl ,其他版本的 Linux 官方也提供了源码安装:https://github.com/openssl/openssl

而在 Windows 下安装大家可以参考这篇文章:https://bbs.csdn.net/topics/392193545?page=1,当然我还是不建议大家在 Windows下进行操作,安装过程相对麻烦,而且可能安装过程中会出现各种状况~~~

我们使用如下命令对 pubkey.pem 找出指数 e 和模数 N :

openssl rsa -pubin -text -modulus -in warmup -in pubkey.pem

结果如下:

我们可以得到如下参数:

e=65537 (0x10001)

Modulus即为N=C2636AE5C3D8E43FFB97AB09028F1AAC6C0BF6CD3D70EBCA281BFFE97FBE30DD

然后我们可以使用 yafu 对 n 进行因数分解,得到 p 、 q

p=275127860351348928173285174381581152299

q=319576316814478949870590164193048041239

解码网站在这里:https://factordb.com/

至此,各个参数已经求得如下,可以编写代码获得私钥,再用私钥解密密文,得到明文信息~

p = 275127860351348928173285174381581152299

q = 319576316814478949870590164193048041239

N = 87924348264132406875276140514499937145050893665602592992418171647042491658461

e = 65537

我们可以开始用 python 写脚本了~

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import gmpy2
import rsa p = 275127860351348928173285174381581152299
q = 319576316814478949870590164193048041239
N = 87924348264132406875276140514499937145050893665602592992418171647042491658461
e = 65537
d = int(gmpy2.invert((e,p - 1) * (q - 1)))
privatekey = rsa.PrivateKey(N,e,d,p,q)
s = open("flag.enc","rb")
print rsa.decrypt(s.read().privatekey).decode()

结果如下:

当然了,我们也可以用之前的公钥对一段信息进行加密操作,具体实现过程如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rsa
import base64 message = 'Angel_Kitty'
key = ('C2636AE5C3D8E43FFB97AB09028F1AAC6C0BF6CD3D70EBCA281BFFE97FBE30DD', '010001')
modulus = int(key[0], 16)
exponent = int(key[1], 16)
rsa_pubkey = rsa.PublicKey(modulus, exponent)
crypto = rsa.encrypt(message, rsa_pubkey)
b64str = base64.b64encode(crypto)
print b64str

加密结果如下:

这样子我们就得到一个 rsa 加密, base64编码过的字符串了,我们这个过程主要就是在一串字符串中,对照一个偏移表,提取需要的位置上的数字~~

本文用到的文件我已经上传到博客园,点击下载即可:https://files.cnblogs.com/files/ECJTUACM-873284962/RSA公钥文件解密密文的原理分析实例.rar

作者:Angel_Kitty
链接:https://www.imooc.com/article/80670
来源:慕课网

RSA简单实践的更多相关文章

  1. Thrift简单实践

    0.什么是RPC RPC(Remote Procedure Call - 远程过程调用),是通过网络从远程计算机上请求服务,而不需要了解底层网路技术的细节.简单点说,就是像调用本地服务(方法)一样调用 ...

  2. Java 异步处理简单实践

    Java 异步处理简单实践 http://www.cnblogs.com/fangfan/p/4047932.html 同步与异步 通常同步意味着一个任务的某个处理过程会对多个线程在用串行化处理,而异 ...

  3. Android 设计随便说说之简单实践(合理组合)

    上一篇(Android 设计随便说说之简单实践(模块划分))例举了应用商店设计来说明怎么做模块划分.模块划分主要依赖于第一是业务需求,具体是怎么样的业务.应用商店则包括两个业务,就是向用户展示appl ...

  4. c#中,委托Func的简单实践

    c# 委托Func的简单实践最近才真正的接触委托,所以针对Func类型的委托,做一个实践练习. 首先说一些我对委托的初级理解:"就是把方法当做参数,传进委托方法里". 我平时用到的 ...

  5. kafka原理和实践(二)spring-kafka简单实践

    系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...

  6. SQL知识以及SQL语句简单实践

    综述 大家都知道SQL是结构化查询语言,是关系数据库的标准语言,是一个综合的,功能极强的同时又简洁易学的,它集级数据查询(Data Quest),数据操纵(Data Manipulation),数据定 ...

  7. ZooKeeper分布式锁简单实践

    ZooKeeper分布式锁简单实践 在分布式解决方案中,Zookeeper是一个分布式协调工具.当多个JVM客户端,同时在ZooKeeper上创建相同的一个临时节点,因为临时节点路径是保证唯一,只要谁 ...

  8. Spring 学习二-----AOP的原理与简单实践

    一.Spring  AOP的原理 AOP全名Aspect-Oriented Programming,中文直译为面向切面(方面)编程.何为切面,就比如说我们系统中的权限管理,日志,事务等我们都可以将其看 ...

  9. VueRouter爬坑第一篇-简单实践

    VueRouter系列的文章示例编写时,项目是使用vue-cli脚手架搭建. 项目搭建的步骤和项目目录专门写了一篇文章:点击这里进行传送 后续VueRouter系列的文章的示例编写均基于该项目环境. ...

随机推荐

  1. 微信支付特约商户进件中base64格式图片上传

    微信图片上传接口地址:https://api.mch.weixin.qq.com/v3/merchant/media/upload 1.上传方法 1 using HttpHandlerDemo; 2 ...

  2. kafka常见面试题

    1.Kafka 中的 ISR(InSyncRepli).OSR(OutSyncRepli).AR(AllRepli)代表什么? 1.AR = ISR+OSR ISR: kafka 使用多副本来保证消息 ...

  3. Python_爬虫伪装_ scrapy中fake_userAgent的使用

    scrapy 伪装代理和fake_userAgent的使用 伪装浏览器代理 在爬取网页是有些服务器对请求过滤的不是很高可以不用ip来伪装请求直接将自己的浏览器信息给伪装也是可以的. 第一种方法: 1. ...

  4. C#高级编程之泛型三(协变与逆变)

    为何引入协变.逆变 我们知道一个子类对象可以赋值给一个基类对象 Animal animal = new Animal(); Animal cat = new Cat(); 那如果是用在泛型里面能行嘛? ...

  5. python的pip快速安装代码

    pip install xx,经常由于网速,或者安装版本问题导致安装速度慢超时等问题, 现提供一个py镜像安装代码,安装库文件前执行下这个程序,可以很快下载 cmd 进入命令提示符 python .p ...

  6. Java并发编程 - Runnbale、Future、Callable 你不知道的那点事(一)

    从事Java开发已经快两年了,都说Java并发编程比较难,比较重要,关键面试必问,但是在我的日常开发过程中,还真的没有过多的用到过并发编程:这不疫情嘛,周末不能瞎逛,就看看师傅们常说的 Runnabl ...

  7. ifconfig结果说明

  8. python-网络安全编程第二天(文件操作)

    前言 才吃完火锅嘿嘿,吃完把今天所学的内容写个博客当做笔记用哈哈! 文件操作 f=open("test.txt",w)直接打开一个文件,如果文件不存在则创建文件open模式w:以写 ...

  9. FL Studio采样器设置的功能是什么

    FL Studio是一款很集成化的软件,它和很多其他的软件不同,FL Studio的通道中集成了很多采样器.这种整合的方式不但功能强大而且也很便捷.今天小编就来为大家详细的简介下FL Studio采样 ...

  10. T147403 「TOC Round 4」吃,都可以吃

    若不考虑 \(m\) 的限制,打表可以发现: 当 \(p=2^n\left(n>1\right)\) 时,最大的 \(f_i\) 是 \(5\),有十个 \(i\) 的 \(f_i\) 是 \( ...