Picnic Planning

Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10742   Accepted: 3885

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form 
Total miles driven: xxx 
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10
Alphonzo Bernardo 32
Alphonzo Park 57
Alphonzo Eduardo 43
Bernardo Park 19
Bernardo Clemenzi 82
Clemenzi Park 65
Clemenzi Herb 90
Clemenzi Eduardo 109
Park Herb 24
Herb Eduardo 79
3

Sample Output

Total miles driven: 183

题意:

要求做一个最小生成树,限制条件:给定其中一个点限制其的度不超过 k (最小 k 度限制生成树)。

思路:

第一步,设被限制度数的节点为 v0 ,则在去除 v0 的情况下做最小生成树,可能得到若干个最小生成树(设有 m 棵树);容易想到,这写树必须通过 v0 来连接成一颗树。

第二步,从 v0 引出 m 条边分别连向 m 棵树,则此时得到一个最小 m 度限制生成树,若给定的 k 小于 m 则说明这不是连通图,无法做生成树。

第三步,最多找出 k-m 条 v0 的边去替换树上现有的边;当然,替换必须使树变小才合法。这一步是比较麻烦的,并且若直接枚举的话时间复杂度也较高。每次使用动态规划找出一条贡献最大的边,并替换进树中。直到找齐 k-m 条边、或无法找到合法边是停止。此时得到的就是最小 k 度限制生成树了。

总结:

思路如上十分清晰,可实现起来细节太多了,比较坑的是同一道题不能在不同的OJ AC。在多次调试之后我的代码总算征服了poj、uva、uvalive、scu,但 fzu 却迟迟不能AC。在纵观其他大佬的题解后,发现我的代码已经算强的了....

此题需要注意的是:输入是两点之间可能存在多条边,需要保留最小的边。

代码:

#include<iostream>
#include<map>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstdio>
#define READFILE freopen("D:\\in.txt","r",stdin);
#define INF 1e9+7
using namespace std; class Edge
{
public:
int u, v, w;
Edge(int a=0, int b=0, int c=0):u(a), v(b), w(c) {}
}; map<string, int> mp;
vector<Edge> edges;
Edge dp[105];
int m, n, k, md, grap[105][105], fa[105], mst[105][105], ans=0; bool cmp(Edge a, Edge b)
{
return a.w<b.w;
} void Init()
{
memset(grap, -1, sizeof(grap));//-1不可达
memset(mst, 0, sizeof(mst));
mp.clear();
edges.clear();
n=1, md=0, ans=0, k=0;
int u, v, w;
mp["Park"]=1; string name1, name2;
cin>>m;
for(int i=0; i<m; ++i)
{
cin>>name1>>name2>>w;
if(mp.find(name1)==mp.end())
mp[name1]=n++;
if(mp.find(name2)==mp.end())
mp[name2]=n++;
u=mp[name1], v=mp[name2];
edges.push_back(Edge(u, v, w));
if(grap[u][v]==-1)
grap[u][v]=grap[v][u]=w;
else
grap[u][v]=grap[v][u]=min(grap[u][v], w);
}
cin>>k;
} int Find(int x)
{
if(fa[x]!=x)
return fa[x]=Find(fa[x]);
return x;
} void Union(int a, int b)
{
int x=Find(a);
int y=Find(b);
if(x!=y)
fa[x]=y;
} int Kruskal()//去除限制点生成md棵最小生成树
{
int res=0;
sort(edges.begin(), edges.end(), cmp);
for(int i=0; i<=n; ++i)
fa[i]=i;
for(int i=0; i<edges.size(); ++i)
{
Edge& e=edges[i];
if(e.u==1 || e.v==1 || Find(e.u)==Find(e.v)) continue;
Union(e.u, e.v);
mst[e.u][e.v]=mst[e.v][e.u]=grap[e.u][e.v];
res+=grap[e.u][e.v];
}
return res;
} int mmst()//生成最小md度限制生成树
{
int minw[25], minv[25], res=0;
for(int i=0; i<=n; ++i) minw[i]=INF;
for(int i=2; i<=n; ++i)
if(grap[1][i]!=-1)
{
int x=Find(i);
if(minw[x] > grap[1][i])
{
minw[x]=grap[1][i];
minv[x]=i;
}
}
for(int i=1; i<=n; ++i)
if(minw[i]!=INF)
{
md++;
mst[1][minv[i]]=mst[minv[i]][1]=1;
res+=grap[1][minv[i]];
}
return res;
} void dfs(int x,int fa)
{
for(int i=2; i<=n; i++)
if(mst[x][i] && i!=fa)
{
if(dp[i].w==-1)
{
if(grap[x][i]<dp[x].w)
{
dp[i].u=dp[x].u;
dp[i].v=dp[x].v;
dp[i].w=dp[x].w;
}
else
dp[i].u=x,dp[i].v=i,dp[i].w=grap[x][i];
}
dfs(i,x);
}
}
int mkst()
{
int res=0;
for(int i=md+1; i<=k; i++)
{
for(int j=0; j<=n; ++j)
dp[j].w=-1;
dp[1].w=-INF;
for(int j=2; j<=n; j++)
if(mst[1][j])
dp[j].w=-INF;
dfs(1,-1);
int t=0,minn=INF;
for(int j=2; j<=n; j++)
if(grap[1][j]!=-1&&grap[1][j]-dp[j].w<minn)
{
minn=grap[1][j]-dp[j].w;
t=j;
}
if(minn>=0)
break;
mst[1][t]=mst[t][1]=1;
int x=dp[t].u,y=dp[t].v;
mst[x][y]=mst[y][x]=0;
res+=minn;
}
return res;
} int main()
{
//READFILE
int t;
t=1;//有的oj多组数据此处改为cin>>t即可
while(t--)
{
Init();
int ans1=Kruskal();
int ans2=mmst();
int ans3=mkst();
ans=ans1+ans2+ans3;
cout<<"Total miles driven: "<<ans<<endl;
if(t)cout<<endl;
}
return 0;
}

poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)的更多相关文章

  1. POJ 1639 Picnic Planning 最小k度生成树

    Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions:11615   Accepted: 4172 D ...

  2. poj1639 Picnic Planning 最小度数限制生成树

    题意:若干个人开车要去park聚会,可是park能停的车是有限的,为k.所以这些人要通过先开车到其它人家中,停车,然后拼车去聚会.另外,车的容量是无限的,他们家停车位也是无限的. 求开车总行程最短. ...

  3. POJ1639 - Picnic Planning

    原题链接 Description 给出一张个点的无向边权图并钦定点,求使得点的度不超过的最小生成树. Solution 首先无视掉与相连的所有边,原图会变成若干互不连通的个块.对每个块分别求MST,再 ...

  4. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  5. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  6. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  7. 【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)

    [题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.T ...

  8. 算法提高 最小方差生成树(Kruskal)_模板

     算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是 ...

  9. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

随机推荐

  1. Shell编程(5)

    文本处理三剑客 在 Shell 下使用这些正则表达式处理文本最多的命令有下面几个工具:                 命令                描述 grep 默认不支持扩展表达式,加-E ...

  2. 突发!美商务部宣布封禁微信,TikTok——面对科技封锁,如何应对

    刚刚美国商务部忽然发布了这则新闻,为了回应特朗普2020年8月6号的行政令,称这些应用程序存在安全威胁. 禁令中称,自2020年9月20日起,美国政府将: 1 禁止通过美国在线移动应用程序商店分发或维 ...

  3. netty学习心得2内存池

    http://frankfan915.iteye.com/blog/2199600 https://www.jianshu.com/p/13f72e0395c8:一个性能调优的文档,还有一些linux ...

  4. 【Java并发编程】synchronized相关面试题总结

    目录 说说自己对于synchronized关键字的了解 synchronized关键字的三种使用 synchronized关键字的底层原理 JDK1.6之后对synchronized关键字进行的优化 ...

  5. 2.JAVA自带的序列化反序列化机制

  6. ftp客户端自动同步 Windows系统简单操作ftp客户端自动同步

    服务器管理工具它是一款功能强大的服务器集成管理器,包含win系统和linux系统的批量连接,vnc客户端,ftp客户端等等实用功能.我们可以使用这款软件的ftp客户端定时上传下载的功能来进实现ftp客 ...

  7. 详尽的 Elasticsearch7.X 安装及集群搭建教程

    为了更好的阅读体验,欢迎访问 原文阅读链接 简介 首先引用 Elasticsearch (下文简称 ES)官网的一段描述: Elasticsearch 是一个分布式.RESTful 风格的搜索和数据分 ...

  8. pwnable.kr-blackjack-witeup

    这是个人对程序逻辑的分析总结. 真的很巧很神奇,理解完程序的逻辑,不知道怎么破解.看了一眼题解,忽然懂了,好神奇哦. 题目说,要获得1000000才能获得flag.经过多次试玩和在分析程序的逻辑,知道 ...

  9. linux操作系统网卡漂移导致网络不可用

    1.故障描述 公司有100-150台服务器安装RHEL7.4&中标麒麟7.4系统,为方便编辑配置网卡,使用脚本方式配置为biosname=0,ifname=0,目的是为将en1o2p此类长字符 ...

  10. Centos-系统任务队列信息-uptime

    uptime 显示系统的当前时间.系统从启动到当前运行时间.当前总共在线用户.系统1.5.15分钟负载情况