Picnic Planning

Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10742   Accepted: 3885

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form 
Total miles driven: xxx 
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10
Alphonzo Bernardo 32
Alphonzo Park 57
Alphonzo Eduardo 43
Bernardo Park 19
Bernardo Clemenzi 82
Clemenzi Park 65
Clemenzi Herb 90
Clemenzi Eduardo 109
Park Herb 24
Herb Eduardo 79
3

Sample Output

Total miles driven: 183

题意:

要求做一个最小生成树,限制条件:给定其中一个点限制其的度不超过 k (最小 k 度限制生成树)。

思路:

第一步,设被限制度数的节点为 v0 ,则在去除 v0 的情况下做最小生成树,可能得到若干个最小生成树(设有 m 棵树);容易想到,这写树必须通过 v0 来连接成一颗树。

第二步,从 v0 引出 m 条边分别连向 m 棵树,则此时得到一个最小 m 度限制生成树,若给定的 k 小于 m 则说明这不是连通图,无法做生成树。

第三步,最多找出 k-m 条 v0 的边去替换树上现有的边;当然,替换必须使树变小才合法。这一步是比较麻烦的,并且若直接枚举的话时间复杂度也较高。每次使用动态规划找出一条贡献最大的边,并替换进树中。直到找齐 k-m 条边、或无法找到合法边是停止。此时得到的就是最小 k 度限制生成树了。

总结:

思路如上十分清晰,可实现起来细节太多了,比较坑的是同一道题不能在不同的OJ AC。在多次调试之后我的代码总算征服了poj、uva、uvalive、scu,但 fzu 却迟迟不能AC。在纵观其他大佬的题解后,发现我的代码已经算强的了....

此题需要注意的是:输入是两点之间可能存在多条边,需要保留最小的边。

代码:

#include<iostream>
#include<map>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstdio>
#define READFILE freopen("D:\\in.txt","r",stdin);
#define INF 1e9+7
using namespace std; class Edge
{
public:
int u, v, w;
Edge(int a=0, int b=0, int c=0):u(a), v(b), w(c) {}
}; map<string, int> mp;
vector<Edge> edges;
Edge dp[105];
int m, n, k, md, grap[105][105], fa[105], mst[105][105], ans=0; bool cmp(Edge a, Edge b)
{
return a.w<b.w;
} void Init()
{
memset(grap, -1, sizeof(grap));//-1不可达
memset(mst, 0, sizeof(mst));
mp.clear();
edges.clear();
n=1, md=0, ans=0, k=0;
int u, v, w;
mp["Park"]=1; string name1, name2;
cin>>m;
for(int i=0; i<m; ++i)
{
cin>>name1>>name2>>w;
if(mp.find(name1)==mp.end())
mp[name1]=n++;
if(mp.find(name2)==mp.end())
mp[name2]=n++;
u=mp[name1], v=mp[name2];
edges.push_back(Edge(u, v, w));
if(grap[u][v]==-1)
grap[u][v]=grap[v][u]=w;
else
grap[u][v]=grap[v][u]=min(grap[u][v], w);
}
cin>>k;
} int Find(int x)
{
if(fa[x]!=x)
return fa[x]=Find(fa[x]);
return x;
} void Union(int a, int b)
{
int x=Find(a);
int y=Find(b);
if(x!=y)
fa[x]=y;
} int Kruskal()//去除限制点生成md棵最小生成树
{
int res=0;
sort(edges.begin(), edges.end(), cmp);
for(int i=0; i<=n; ++i)
fa[i]=i;
for(int i=0; i<edges.size(); ++i)
{
Edge& e=edges[i];
if(e.u==1 || e.v==1 || Find(e.u)==Find(e.v)) continue;
Union(e.u, e.v);
mst[e.u][e.v]=mst[e.v][e.u]=grap[e.u][e.v];
res+=grap[e.u][e.v];
}
return res;
} int mmst()//生成最小md度限制生成树
{
int minw[25], minv[25], res=0;
for(int i=0; i<=n; ++i) minw[i]=INF;
for(int i=2; i<=n; ++i)
if(grap[1][i]!=-1)
{
int x=Find(i);
if(minw[x] > grap[1][i])
{
minw[x]=grap[1][i];
minv[x]=i;
}
}
for(int i=1; i<=n; ++i)
if(minw[i]!=INF)
{
md++;
mst[1][minv[i]]=mst[minv[i]][1]=1;
res+=grap[1][minv[i]];
}
return res;
} void dfs(int x,int fa)
{
for(int i=2; i<=n; i++)
if(mst[x][i] && i!=fa)
{
if(dp[i].w==-1)
{
if(grap[x][i]<dp[x].w)
{
dp[i].u=dp[x].u;
dp[i].v=dp[x].v;
dp[i].w=dp[x].w;
}
else
dp[i].u=x,dp[i].v=i,dp[i].w=grap[x][i];
}
dfs(i,x);
}
}
int mkst()
{
int res=0;
for(int i=md+1; i<=k; i++)
{
for(int j=0; j<=n; ++j)
dp[j].w=-1;
dp[1].w=-INF;
for(int j=2; j<=n; j++)
if(mst[1][j])
dp[j].w=-INF;
dfs(1,-1);
int t=0,minn=INF;
for(int j=2; j<=n; j++)
if(grap[1][j]!=-1&&grap[1][j]-dp[j].w<minn)
{
minn=grap[1][j]-dp[j].w;
t=j;
}
if(minn>=0)
break;
mst[1][t]=mst[t][1]=1;
int x=dp[t].u,y=dp[t].v;
mst[x][y]=mst[y][x]=0;
res+=minn;
}
return res;
} int main()
{
//READFILE
int t;
t=1;//有的oj多组数据此处改为cin>>t即可
while(t--)
{
Init();
int ans1=Kruskal();
int ans2=mmst();
int ans3=mkst();
ans=ans1+ans2+ans3;
cout<<"Total miles driven: "<<ans<<endl;
if(t)cout<<endl;
}
return 0;
}

poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)的更多相关文章

  1. POJ 1639 Picnic Planning 最小k度生成树

    Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions:11615   Accepted: 4172 D ...

  2. poj1639 Picnic Planning 最小度数限制生成树

    题意:若干个人开车要去park聚会,可是park能停的车是有限的,为k.所以这些人要通过先开车到其它人家中,停车,然后拼车去聚会.另外,车的容量是无限的,他们家停车位也是无限的. 求开车总行程最短. ...

  3. POJ1639 - Picnic Planning

    原题链接 Description 给出一张个点的无向边权图并钦定点,求使得点的度不超过的最小生成树. Solution 首先无视掉与相连的所有边,原图会变成若干互不连通的个块.对每个块分别求MST,再 ...

  4. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  5. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  6. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  7. 【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)

    [题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.T ...

  8. 算法提高 最小方差生成树(Kruskal)_模板

     算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是 ...

  9. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

随机推荐

  1. JS进阶 | 解决JQ keyup事件延迟的问题

    写在前面 在使用keyup事件时,存在一个问题,假如想要做出类似于表单验证的demo:表单输入账号 “xxx” 后  再去ajax异步去后台数据库匹配,但是keyup事件的原理是每次键盘事件弹起就会检 ...

  2. ribbon源码(4) 载均衡算法

    负载均衡算法模块主要的功能是从负载均衡器中获取服务器列表信息,根据算法选取出一个服务器. IRule 负载均衡算法接口 public interface IRule{ public Server ch ...

  3. hystrix(4) 异常降级

    当执行HystrixCommand时,如果发生命令执行异常.熔断器熔断.信号量超过数量,就会执行降级fallback方法,并返回结果.本质上,当出现以上情况是,执行fallback方法,而不是run方 ...

  4. hystrix文档翻译之工作原理

    流程图 下面的图片显示了一个请求在hystrix中的流程图. 1.构造一个HystrixCommand或者HystrixObservableCommand对象 第一步是创建一个HystrixComma ...

  5. SpringBoot框架:使用mybatis连接mysql数据库完成数据访问(二)

    一.导入依赖包 1.在创建项目时勾选: 勾选SQL中的JDBC API.MyBatis Framework.MySQL Driver,创建项目后就会自动配置和引入这些包. 2.在pom.xml文件中添 ...

  6. 关于bat/cmd中转义符的使用

    今天笔者在cmd中准备使用echo 输出<https://www.cnblogs.com/5201351> 发现直接就报错:命令语法不正确. 然后就想到可能是<和>在cmd中有 ...

  7. 栈帧的内部结构--操作数栈(Opreand Stack)

    每个栈帧中包含: 局部变量表(Local Variables) 操作数栈(Opreand Stack) 或表达式栈 动态链接 (Dynamic Linking) (或指向运行时常量的方法引用) 动态返 ...

  8. JVM 的参数类型

    标配参数 -version -help X 参数 -Xint:解释执行 -Xcomp:第一次使用就编译成本地代码 -Xmixed:混合模式 XX 参数 Boolean 类型:-XX:+ 或者 - 某个 ...

  9. 刷题[NPUCTF2020]ezlogin

    xpath注入 xpath注入这篇文章有关于xpath很详细的解答,包括原理等,详细了解请见此篇. 我个人再稍微讲一讲: 首先它的网站目录下会有一个xml文件,大概格式是这样: <?xml ve ...

  10. 简单渗透测试流程演示(445端口、IPC$、灰鸽子)

    目录 一.实验流程 二.实验过程 2.1 信息收集 2.2 利用过程 2.3 暴力破解系统密码之445 2.4 通过木马留后门 一.实验流程 0.授权(对方同意被渗透测试才是合法的.)1.信息收集  ...