题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离。问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则输出-1。

解法:带权并查集。sx[x]表示x与其根结点的横坐标的差,sy[x]表示x与其根结点的纵坐标的差。}
输入需要好好处理一下:1.我自定义(x,y,E)的x,y之间的横坐标差为正,W为负,N时的纵坐标差为正,S时为负;2.需要给询问排序,再一个个将关系存储下来。

注意——我将x,y合并联盟时的关系式就偷懒按 【poj 1182】食物链(图论--带权并查集) 所提到的用方块图直接推,发现样例对了,还1A了,速度也比较快!(我代码也算是很清晰的吧)❀(๑╯◡╰๑)❀ 所以我真的向神犇求解啊!!

P.S.我碰运气地没有完全推导、不负责任地打了ins( )里的式子,而对于这个hyc有另外的一种简单易懂的坐法:出现fx,x,fy,y,可知把fy附到x所在联盟下时,可以把 fy 和 y 颠倒相对位置,让输入的对于 x 和 y 的距离 d 可以直截了当地得到利用,赋值给“一身轻”的 y。

1 int fy=ffind(y);
2 sx[fy]=-sx[y],sy[fy]=-sy[y]; fa[fy]=y, fa[y]=x;
3 sx[y]=w[t][0]*d,sy[y]=w[t][0]*d;

下面是我的完整代码——

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7
8 const int N=40010,M=40010,K=10010;
9 struct quiry{int x,y,t,id;}q[K];
10 struct node{int x,y,d,t;}a[M];
11 int n,m,k;
12 char s[3];
13 int fa[N],sx[N],sy[N],ans[K];
14 int w[5][2]={{1,0},{0,-1},{-1,0},{0,1}};//ESWN,multi
15
16 bool cmp(quiry x,quiry y) {return x.t<y.t;}
17 int mabs(int x) {return x>0?x:-x;}
18 int ffind(int x)
19 {
20 if (fa[x]!=x)
21 {
22 int fx=fa[x];
23 fa[x]=ffind(fx);
24 sx[x]+=sx[fx];
25 sy[x]+=sy[fx];
26 }
27 return fa[x];
28 }
29 void ins(int x,int y,int d,int t)
30 {
31 int fx=ffind(x),fy=ffind(y);
32 if (fx==fy) return;
33 fa[fy]=fx;
34 sx[fy]=w[t][0]*d+sx[x]-sx[y];//
35 sy[fy]=w[t][1]*d+sy[x]-sy[y];//
36 }
37 int solve(int x,int y)
38 {
39 int fx=ffind(x),fy=ffind(y);
40 if (fx!=fy) return -1;
41 return mabs(sx[x]-sx[y])+mabs(sy[x]-sy[y]);
42 }
43 int main()
44 {
45 scanf("%d%d",&n,&m);
46 for (int i=1;i<=m;i++)
47 {
48 scanf("%d%d%d%s",&a[i].x,&a[i].y,&a[i].d,s);
49 if (s[0]=='E') a[i].t=0;
50 if (s[0]=='S') a[i].t=1;
51 if (s[0]=='W') a[i].t=2;
52 if (s[0]=='N') a[i].t=3;
53 }
54 scanf("%d",&k);
55 for (int i=1;i<=k;i++)
56 {
57 scanf("%d%d%d",&q[i].x,&q[i].y,&q[i].t);
58 q[i].id=i;
59 }
60 sort(q+1,q+1+k,cmp);
61 for (int i=1;i<=n;i++) fa[i]=i,sx[i]=sy[i]=0;
62 int t=0;
63 for (int i=1;i<=k;i++)
64 {
65 while (t<q[i].t && t<m) {t++; ins(a[t].x,a[t].y,a[t].d,a[t].t);}
66 ans[q[i].id]=solve(q[i].x,q[i].y);
67 }
68 for (int i=1;i<=k;i++) printf("%d\n",ans[i]);
69 return 0;
70 }

【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)的更多相关文章

  1. 【poj 1988】Cube Stacking(图论--带权并查集)

    题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...

  2. 【poj 1962】Corporative Network(图论--带权并查集 模版题)

    P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...

  3. 【POJ 1984】Navigation Nightmare(带权并查集)

    Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40 ...

  4. POJ1984:Navigation Nightmare(带权并查集)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7871   Accepted: 2 ...

  5. poj 1984 Navigation Nightmare(带权并查集+小小的技巧)

    题目链接:http://poj.org/problem?id=1984 题意:题目是说给你n个线,并告知其方向,然后对于后面有一些询问,每个询问有一个时间点,要求你输出在该时间点a,b的笛卡尔距离,如 ...

  6. 【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)

    题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账. 解法:带权并查集+前缀和.   判断账本真假是通过之前可算到的答案与当前读入的值是否 ...

  7. 【poj 1182】食物链(图论--带权并查集)

    题意:有3种动物A.B.C,形成一个"A吃B, B吃C,C吃A "的食物链.有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类. ...

  8. POJ 1703 Find them, Catch them(带权并查集)

    传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accep ...

  9. (中等) POJ 1703 Find them, Catch them,带权并查集。

    Description The police office in Tadu City decides to say ends to the chaos, as launch actions to ro ...

随机推荐

  1. 10步写了个Django网站,正经网站···

      Django做网站只要10步,真的只有10步,不信?咱们来数数--   今天主要讲解用Pycharm编辑器搭建网站,网站功能是 实现在局域网中快速传递大文件! 比如:同事要给你个1G的文件,你丢一 ...

  2. 了解一下ajax

    AJAX:是一种无需重新加载页面的情况下能够更新部分(局部更新)网页的技术. 1. 概念:ASychronous JavaScript And XML 异步的JavaScript和XML 首先了解一下 ...

  3. 通过show status 命令了解各种sql的执行频率

    show status like 'Com_%'; Com_select                | 1   执行select操作的次数,一次查询只累加1 Com_insert         ...

  4. LeetCode783. 二叉搜索树节点最小距离

    题目 和LeetCode530没什么区别 1 class Solution { 2 public: 3 vector<int>ans; 4 int minDiffInBST(TreeNod ...

  5. 【葵花宝典】一天掌握Docker

    第1章Docker 概述 1-1 Docker是什么 没有虚拟化技术的原始年代 我们仔细想想,在没有计算虚拟化技术的"远古"年代,如果我们要部署一个应用程序(Application ...

  6. 【转】Js中的window.parent ,window.top,window.self 详解

    [转自]http://blog.csdn.net/zdwzzu2006/article/details/6047632 在应用有frameset或者iframe的页面时,parent是父窗口,top是 ...

  7. kaggle新手如何在平台学习大神的代码

    原创:数据臭皮匠  [导读]Kaggle ,作为听说它很牛X但从未接触过的同学,可能仅仅了解这是一个参加数据挖掘比赛的网站,殊不知Kaggle也会有赛题相关的数据集, 比如我们熟知的房价预测.泰坦尼克 ...

  8. 白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧。

    目录 一.导读 二.福利:账号借用 三._search api 搜索api 3.1.什么是query string search? 3.2.什么是query dsl? 3.3.干货!32个查询案例! ...

  9. numpy模块(详解)

    重点 索引和切片 级联 聚合操作 统计操作 矩阵 什么是数据分析 是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 数据分析是用适当的方法对收集来的大量数据进行分析,帮助 ...

  10. CSS实现迷你键盘

    最近做了一个迷你键盘的dome,这里分享给大家 dome下载地址(点击下载) 代码如下: <!DOCTYPE html> <html lang="en" > ...