二项式反演

\[f_n=\sum\limits_{i=0}^nC^i_ng_i \Leftrightarrow g_n=\sum\limits_{i=0}^n{(-1)}^{n-i}f_i
\]

证明:

容斥原理

\[|A_1 \cup A_2\cup\cdots\cup A_n|=\sum\limits_{1\le i\le n}|A_i|-\sum\limits_{1\le i<j\le n}|A_i\cap A_j|+\cdots+(-1)^{n-1}\times |A_1\cap A_2\cap \cdots \cap A_n|
\]

证明:显然

如果一个元素 \(p\) 被 \(m\) 个集合包含,那么 \(p\) 对于左侧的贡献是 \(1\)

对于右侧的贡献:

\[ \sum\limits_{i=1}^m(-1)^{i-1}C^i_m\\\large=-\sum\limits_{i=1}^m(-1)^{i}C^i_m\\\large =
1-\sum\limits_{i=0}^m(-1)^{i}C^i_m\\\large=1-(1-1)^m=1
\]

二项式定理

\[(x+y)^n=\sum\limits_{i=0}^nC^i_n x^i y^{n-i}
\]

这个柿子可以理解为 ,\(n\) 个括号,每个括号选择 \(x\) 或 \(y\) ,其中 \(i\) 个选了 \(x\) ,那么其余 \(n-i\) 个必然是\(y\) ,所以 \(x^i y^{n-i}\) 的系数是 \(n\) 个括号选择 \(i\) 个的方案数,即 \(C^i_n\)

容斥原理的最后一步就是这么证明的。


接着证明二项式反演

设集合 \(A_i\) 的补集是 \(B_i\) ,全集是 \(U\), \(C_A\) 表示 \(A\) 的补集

那么\(A_1 \cup A_2\cup\cdots\cup A_n\) 的补集就是 \(B_1 \cap B_2\cap\cdots\cap B_n\) ,结合容斥原理可得

\[|B_1 \cap B_2\cap\cdots\cap B_n|=|U|-\sum\limits_{1\le i\le n}|A_i|-\sum\limits_{1\le i<j\le n}|A_i\cap A_j|+\cdots+(-1)^{n-1}\times |A_1\cap A_2\cap \cdots \cap A_n|
\]
\[\because C_{C_A}=A\\
\therefore |A_1 \cap A_2\cap\cdots\cap A_n|=|U|-\sum\limits_{1\le i\le n}|B_i|-\sum\limits_{1\le i<j\le n}|B_i\cap B_j|+\cdots+(-1)^{n-1}\times |B_1\cap B_2\cap \cdots \cap B_n|
\]

考虑一种特殊情况:集合的交集大小只与集合个数有关。给出一种可行的情况: \(U=\{1,2,\cdots,2n\},A_i=\{1,2,\cdots,i-1,i+1,\cdots,n,i+n\}\)

于是珂以令 \(f(i)\) 为 \(i\) 个集合补集的交集大小, \(g(i)\) 为 \(i\) 个原集的大小。

得到:

\[f(n)=\sum\limits_{i=0}^n(-1)^iC^i_ng(i)\Leftrightarrow g(n)=\sum\limits_{i=0}^n(-1)^iC^i_nf(i)
\]

令 \(h(i)=(-1)^ig(i)\) ,那么

\[ f(n)=\sum\limits_{i=0}^n(-1)^iC^i_ng(i)=\sum\limits_{i=0}^nC^i_nh(i)\Leftrightarrow g(n)=\dfrac{h(n)}{(-1)^n}=\sum\limits_{i=0}^n(-1)^{i}C^i_nf(i)\\
即f_n=\sum\limits_{i=0}^nC^i_nh_i \Leftrightarrow h_n=\sum\limits_{i=0}^n{(-1)}^{n-i}C_{n}^{i}f_i
\]

Min_Max 容斥

给定集合 \(S\) ,设 \(max(S),min(S)\) 分别为 \(S\) 中的最大、最小值,那么

\[max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|+1}min(T)
\]

证明:

考虑构造一个系数 \(f(i)\) 使得 \(max(S)=\sum\limits_{T\subseteq S}f(|T|)min(T)\)

不妨 \(S=\{1,2,\cdots,n\}\)

考虑通过枚举哪些集合的最小值是 \(x+1\) 计算这个第 \(x+1\) 大的数的贡献,这个那么贡献就是 \(\sum\limits_{i=0}^xC^i_xf(i+1)\)

而我们希望这个柿子只有在 \(x=0\) 的时候恰好是 \(1\) ,其余时候都是 \(0\) ,这样等式右边一加恰好是 \(S\) 的最大数,等于等式左边,则

\[[x==0]=\sum\limits_{i=0}^xC^i_xf(i+1)
\]

套用之前的二项式反演公式,设 \(A(x)=[x==0],B(x)=f(i+1)\)

由于 \(A(x)=\sum\limits_{i=0}^nC^i_nB(i)\)

可以得到 \(B(x)=\sum\limits_{i=0}^x(-1)^{x-i}A(i)\)

即 \(f(x+1)=\sum\limits_{i=0}^x(-1)^{x-i}[i==0]=(-1)^x\)

所以 \(f(x)=(-1)^{x+1}\)

\(max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|+1}min(T)\)

证毕!

参考资料

http://blog.miskcoo.com/2015/12/inversion-magic-binomial-inversion

https://www.cnblogs.com/GXZlegend/p/11407185.html

https://blog.csdn.net/dt_kang/article/details/88805837

从 0 开始的min_max容斥证明的更多相关文章

  1. BZOJ4036:按位或 (min_max容斥&高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  2. kth min_max容斥

    题解: 普通的$min-max$容斥是用来求最后出现元素的期望之类的 $kth min-max$容斥进一步解决倒数第k个出现的元素的期望 给出公式: $kthmax(S)=\sum\limits_{T ...

  3. How many integers can you find(容斥+dfs容斥)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  4. How Many Sets I(容斥定理)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...

  5. LOJ#503. 「LibreOJ β Round」ZQC 的课堂(容斥+FHQTreap)

    题面 传送门 题解 首先\(x\)和\(y\)两维互相独立,可以分开考虑,我们以\(x\)为例 我们把\(x\)做个前缀和,那么就是问有多少\(i\)满足\(s_is_{i-1}<0\),其中\ ...

  6. Min-Max 容斥的证明

    这里有 Min-Max 容斥的证明以及唯一一道博主做过的例题... 上个结论: \[Min\{S\}=\sum_{T\subseteq S,T\not=\varnothing}(-1)^{|T|-1} ...

  7. Xtreme9.0 - Light Gremlins 容斥

    Xtreme9.0 - Light Gremlins 题目连接: https://www.hackerrank.com/contests/ieeextreme-challenges/challenge ...

  8. hdu 3682 10 杭州 现场 C To Be an Dream Architect 容斥 难度:0

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  9. 之江学院第0届校赛 qwb与支教 (容斥公式)

    description qwb同时也是是之江学院的志愿者,暑期要前往周边地区支教,为了提高小学生的数学水平.她把小学生排成一排,从左至右从1开始依次往上报数. 玩完一轮后,他发现这个游戏太简单了.于是 ...

随机推荐

  1. python菜鸟教程学习3:基础语法

    菜鸟教程对应网址:https://www.runoob.com/python3/python3-basic-syntax.html 编码:python3用UTF-8编码,所有字符串都是unicode字 ...

  2. tcp 拥塞控制引擎&状态机

    TCP核心:流量控制   拥塞控制 流量控制:滑动窗口来实现, 防止接收方能够处理过来 拥塞控制:防止过多的包被发送到网络中,避免出现网络负载过大 说一说 拥塞控制: 拥塞控制状态机的状态有五种,分别 ...

  3. linux系统中离线安装python3.7过程记录

    最近公司新弄来一台linux  redhat 4.4.7服务器,准备在上面离线安装python3.7,安装过程中出现一些问题,特此记录下来. 首先在python官网上下载了 Python-3.7.3. ...

  4. 微服务通信之feign的配置隔离

    前言 由上文我们知道针对某一个Feign接口,我们可以给他设置特定的配置类.那如果现在有一个服务,我们只想对A服务配置一个拦截器拦截请求而不影响其他服务,那应该怎么做呢? 一.feign接口配置 由前 ...

  5. MiniCat:手写Http服务器

    minicat 项目介绍 已实现http基础协议.参数接受.servlet.filter.cookie.多文件上传等.支持NIO. 一款轻量化Http服务器.支持bio.nio两种模式.归属Coody ...

  6. 医学AI论文解读 |Circulation|2018| 超声心动图的全自动检测在临床上的应用

    文章来自微信公众号:机器学习炼丹术.号主炼丹兄WX:cyx645016617.文章有问题或者想交流的话欢迎- 参考目录: @ 目录 0 论文 1 概述 2 pipeline 3 技术细节 3.1 预处 ...

  7. mysql之数据锁

  8. 单线程的Redis有哪些慢动作?

    持续原创输出,点击上方蓝字关注我 目录 前言 为什么 Redis 这么火? 键和值的保存形式? 为什么哈希表操作变慢了? 集合的操作效率? 有哪些数据结构? 不同操作的复杂度? 总结 前言 现在一提到 ...

  9. sql bypass waf fuzz python

    从freebuf copy过来的,先保存,有空再改 #encoding=utf-8 import requests url = "http://127.0.0.1/index.php?id= ...

  10. 【ACwing 98】分形之城——分形

    (题面来自ACwing) 城市的规划在城市建设中是个大问题. 不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现. 而这座名为 Fractal 的城市设想了 ...