对于一个固定的左端点,右端点向右移动时,其子串权值和不断增大,字典序降序排名不断减小,因此对于一个左端点,最多存在一个右端点使其满足条件。

所以可以枚举左端点,然后二分右端点的位置,权值和通过前缀和来查询,现在的问题就是如何快速查询一个子串的排名。

考虑用后缀数组来解决,对于一个子串\([l,r]\),对于在位置\(l\)对应的后缀排名之前的后缀中的子串是能对该子串的排名产生贡献的。

若该子串的长度比\(l\)对应的后缀和前一个后缀的\(LCP\)大,即\(len>ht_{rk_l}\),也就是该子串没有被\(LCP\)所包括,则其排名为\(sum_l-(n-l+1-len)\),其中\(sum_l\)表示\(l\)所对应的后缀之前所有的后缀中本质不同的子串个数,然后再减去右端点\(r\)右边多算的部分,即为该子串的排名。然后求降序排名时,用本质不同子串个数减去正序排名即可。

若该子串被\(LCP\)所包括,那么直接像上面那样计算是不对的,则需向前二分到第一个和\(l\)所对应的后缀的\(LCP\)恰好等于\(len\)的位置,然后和上面一样用该位置计算排名。

最终的复杂度为\(O(n\ log^2\ n)\)

\(code:\)

#include<bits/stdc++.h>
#define maxn 400010
#define mk make_pair
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,m,ans,tot;
int v[maxn],b[maxn],rk[maxn],sa[maxn],tp[maxn],ht[maxn];
int lg[maxn],f[maxn][25];
ll sum[maxn];
char s[maxn];
vector<pair<int,int> > ve;
void rsort()
{
for(int i=0;i<=m;++i) b[i]=0;
for(int i=1;i<=n;++i) b[rk[i]]++;
for(int i=1;i<=m;++i) b[i]+=b[i-1];
for(int i=n;i;--i) sa[b[rk[tp[i]]]--]=tp[i];
}
void SA()
{
for(int i=1;i<=n;++i) rk[i]=s[i],tp[i]=i;
rsort();
for(int k=1;k<=n;k<<=1)
{
int num=0;
for(int i=n-k+1;i<=n;++i) tp[++num]=i;
for(int i=1;i<=n;++i)
if(sa[i]>k)
tp[++num]=sa[i]-k;
rsort(),memcpy(tp,rk,sizeof(rk)),rk[sa[1]]=num=1;
for(int i=2;i<=n;++i)
rk[sa[i]]=(tp[sa[i]]==tp[sa[i-1]]&&tp[sa[i]+k]==tp[sa[i-1]+k])?num:++num;
if(num==n) break;
m=num;
}
int k=0;
for(int i=1;i<=n;++i) rk[sa[i]]=i;
for(int i=1;i<=n;++i)
{
if(rk[i]==1) continue;
if(k) k--;
int j=sa[rk[i]-1];
while(s[i+k]==s[j+k]) k++;
ht[rk[i]]=k;
}
tot=n*(n+1)/2;
for(int i=1;i<=n;++i) tot-=ht[i];
sum[sa[1]]=n-sa[1]+1;
for(int i=2;i<=n;++i)
sum[sa[i]]=sum[sa[i-1]]+n-sa[i]+1-ht[i];
}
void init()
{
lg[0]=-1;
for(int i=1;i<=n;++i) lg[i]=lg[i>>1]+1;
for(int i=1;i<=n;++i) f[i][0]=ht[i];
for(int j=1;j<=20;++j)
for(int i=1;i+(1<<j)-1<=n;++i)
f[i][j]=min(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
int lcp(int l,int r)
{
if(l>r) swap(l,r);
l++;
int len=lg[r-l+1];
return min(f[l][len],f[r-(1<<len)+1][len]);
}
ll get(int L,int R)
{
int len=R-L+1;
if(len>ht[rk[L]]) return tot-(sum[L]-(n-L+1-len))+1;
else
{
int l=1,r=rk[L]-1,p;
while(l<=r)
{
int mid=(l+r)>>1;
if(lcp(rk[L],mid)>=len) p=mid,r=mid-1;
else l=mid+1;
}
return tot-(sum[sa[p]]-(n-sa[p]+1-len))+1;
} }
void work()
{
for(int i=1;i<=n;++i)
{
int l=i,r=n;
while(l<=r)
{
int mid=(l+r)>>1;
ll rank=get(i,mid),val=v[mid]-v[i-1];
if(rank==val)
{
ans++,ve.push_back(mk(i,mid));
break;
}
else if(rank>val) l=mid+1;
else r=mid-1;
}
}
}
int main()
{
scanf("%s",s+1),n=strlen(s+1),m=150;
for(int i=1;i<=n;++i) read(v[i]),v[i]+=v[i-1];
SA(),init(),work();
printf("%d\n",ans),sort(ve.begin(),ve.end());
for(int i=0;i<ve.size();++i)
printf("%d %d\n",ve[i].first,ve[i].second);
return 0;
}

题解 洛谷 P4143 【采集矿石】的更多相关文章

  1. 【刷题】洛谷 P4143 采集矿石

    题目背景 ZRQ成功从坍塌的洞穴中逃了出来.终于,他看到了要研究的矿石.他想挑一些带回去完成任务. 题目来源:Zhang_RQ哦对了ZRQ就他,嗯 题目描述 ZRQ发现这里有 \(N\) 块排成一排的 ...

  2. 洛谷 P4143 采集矿石 后缀数组

    题目背景 ZRQ 成功从坍塌的洞穴中逃了出来.终于,他看到了要研究的矿石.他想挑一些带回去完成任务. 题目来源:Zhang_RQ哦对了 \(ZRQ\) 就他,嗯 题目描述 ZRQ 发现这里有 \(N\ ...

  3. [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform

    [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...

  4. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  5. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  6. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  7. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  8. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  9. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

随机推荐

  1. 01MySQL内核分析-The Skeleton of the Server Code

    摘要 这个官方文档一段对MySQL内核分析的一个向导.是对MySQL一条insert语句写入到MySQL数据库的分析. 但是,对于MySQL 5.7版本来说,基本上都是写入到innodb引擎.但也还是 ...

  2. OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. hashcode和==

    public class Main { public static void main(String[] args) { Object o=new Object(); System.out.print ...

  4. 你的 IDEA 是如何配置的?卡不卡?试试这样配置

    本文作者在和同事的一次讨论中发现,对 IntelliJ IDEA 内存采用不同的设置方案,会对 IDE 的速度和响应能力产生不同的影响. Don't be a Scrooge and give you ...

  5. Redis持久化机制,优缺点,如何选择合适方式

    一.什么是Redis持久化? 持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失. 二.Redis 的持久化机制是什么?各自的优缺点? Redis 提供两种持久化机制 RDB(默认) 和 ...

  6. Office2019 相关激活秘钥

    零售版 W8W6K-3N7KK-PXB9H-8TD8W-BWTH9 批量板 N9J9Q-Q7MMP-XDDM6-63KKP-76FPM

  7. springboot + rabbitmq 用了消息确认机制,感觉掉坑里了

    本文收录在个人博客:www.chengxy-nds.top,技术资源共享,一起进步 最近部门号召大伙多组织一些技术分享会,说是要活跃公司的技术氛围,但早就看穿一切的我知道,这 T M 就是为了刷KPI ...

  8. 07 . Kubernetes之Service

    kubernetes有三种网络 1. Node Network 2. Pod Network 3. Cluster Network Service-网络代理模式 **userspce: 1.1- ** ...

  9. wsl环境下配置ubuntu16.04

    wsl环境下配置ubuntu16.04 在公司同事的安利下,终于给自己用了8年的老笔记本(戴尔XPS L502X)换上了固态硬盘(WD500G,SATA3接口) 当然,系统重装了一遍,所有的软件也都没 ...

  10. Python3笔记015 - 3.6 空语句

    第3章 流程控制语句 3.6 空语句 # pass 占位符,暂时不做任何事情,方便后面补充功能 for i in range(1,10): if i%2 == 0: print(i, end = '' ...