对于一个固定的左端点,右端点向右移动时,其子串权值和不断增大,字典序降序排名不断减小,因此对于一个左端点,最多存在一个右端点使其满足条件。

所以可以枚举左端点,然后二分右端点的位置,权值和通过前缀和来查询,现在的问题就是如何快速查询一个子串的排名。

考虑用后缀数组来解决,对于一个子串\([l,r]\),对于在位置\(l\)对应的后缀排名之前的后缀中的子串是能对该子串的排名产生贡献的。

若该子串的长度比\(l\)对应的后缀和前一个后缀的\(LCP\)大,即\(len>ht_{rk_l}\),也就是该子串没有被\(LCP\)所包括,则其排名为\(sum_l-(n-l+1-len)\),其中\(sum_l\)表示\(l\)所对应的后缀之前所有的后缀中本质不同的子串个数,然后再减去右端点\(r\)右边多算的部分,即为该子串的排名。然后求降序排名时,用本质不同子串个数减去正序排名即可。

若该子串被\(LCP\)所包括,那么直接像上面那样计算是不对的,则需向前二分到第一个和\(l\)所对应的后缀的\(LCP\)恰好等于\(len\)的位置,然后和上面一样用该位置计算排名。

最终的复杂度为\(O(n\ log^2\ n)\)

\(code:\)

#include<bits/stdc++.h>
#define maxn 400010
#define mk make_pair
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,m,ans,tot;
int v[maxn],b[maxn],rk[maxn],sa[maxn],tp[maxn],ht[maxn];
int lg[maxn],f[maxn][25];
ll sum[maxn];
char s[maxn];
vector<pair<int,int> > ve;
void rsort()
{
for(int i=0;i<=m;++i) b[i]=0;
for(int i=1;i<=n;++i) b[rk[i]]++;
for(int i=1;i<=m;++i) b[i]+=b[i-1];
for(int i=n;i;--i) sa[b[rk[tp[i]]]--]=tp[i];
}
void SA()
{
for(int i=1;i<=n;++i) rk[i]=s[i],tp[i]=i;
rsort();
for(int k=1;k<=n;k<<=1)
{
int num=0;
for(int i=n-k+1;i<=n;++i) tp[++num]=i;
for(int i=1;i<=n;++i)
if(sa[i]>k)
tp[++num]=sa[i]-k;
rsort(),memcpy(tp,rk,sizeof(rk)),rk[sa[1]]=num=1;
for(int i=2;i<=n;++i)
rk[sa[i]]=(tp[sa[i]]==tp[sa[i-1]]&&tp[sa[i]+k]==tp[sa[i-1]+k])?num:++num;
if(num==n) break;
m=num;
}
int k=0;
for(int i=1;i<=n;++i) rk[sa[i]]=i;
for(int i=1;i<=n;++i)
{
if(rk[i]==1) continue;
if(k) k--;
int j=sa[rk[i]-1];
while(s[i+k]==s[j+k]) k++;
ht[rk[i]]=k;
}
tot=n*(n+1)/2;
for(int i=1;i<=n;++i) tot-=ht[i];
sum[sa[1]]=n-sa[1]+1;
for(int i=2;i<=n;++i)
sum[sa[i]]=sum[sa[i-1]]+n-sa[i]+1-ht[i];
}
void init()
{
lg[0]=-1;
for(int i=1;i<=n;++i) lg[i]=lg[i>>1]+1;
for(int i=1;i<=n;++i) f[i][0]=ht[i];
for(int j=1;j<=20;++j)
for(int i=1;i+(1<<j)-1<=n;++i)
f[i][j]=min(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
int lcp(int l,int r)
{
if(l>r) swap(l,r);
l++;
int len=lg[r-l+1];
return min(f[l][len],f[r-(1<<len)+1][len]);
}
ll get(int L,int R)
{
int len=R-L+1;
if(len>ht[rk[L]]) return tot-(sum[L]-(n-L+1-len))+1;
else
{
int l=1,r=rk[L]-1,p;
while(l<=r)
{
int mid=(l+r)>>1;
if(lcp(rk[L],mid)>=len) p=mid,r=mid-1;
else l=mid+1;
}
return tot-(sum[sa[p]]-(n-sa[p]+1-len))+1;
} }
void work()
{
for(int i=1;i<=n;++i)
{
int l=i,r=n;
while(l<=r)
{
int mid=(l+r)>>1;
ll rank=get(i,mid),val=v[mid]-v[i-1];
if(rank==val)
{
ans++,ve.push_back(mk(i,mid));
break;
}
else if(rank>val) l=mid+1;
else r=mid-1;
}
}
}
int main()
{
scanf("%s",s+1),n=strlen(s+1),m=150;
for(int i=1;i<=n;++i) read(v[i]),v[i]+=v[i-1];
SA(),init(),work();
printf("%d\n",ans),sort(ve.begin(),ve.end());
for(int i=0;i<ve.size();++i)
printf("%d %d\n",ve[i].first,ve[i].second);
return 0;
}

题解 洛谷 P4143 【采集矿石】的更多相关文章

  1. 【刷题】洛谷 P4143 采集矿石

    题目背景 ZRQ成功从坍塌的洞穴中逃了出来.终于,他看到了要研究的矿石.他想挑一些带回去完成任务. 题目来源:Zhang_RQ哦对了ZRQ就他,嗯 题目描述 ZRQ发现这里有 \(N\) 块排成一排的 ...

  2. 洛谷 P4143 采集矿石 后缀数组

    题目背景 ZRQ 成功从坍塌的洞穴中逃了出来.终于,他看到了要研究的矿石.他想挑一些带回去完成任务. 题目来源:Zhang_RQ哦对了 \(ZRQ\) 就他,嗯 题目描述 ZRQ 发现这里有 \(N\ ...

  3. [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform

    [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...

  4. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  5. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  6. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  7. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  8. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  9. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

随机推荐

  1. web安全中的session攻击

    运行着个简单的demo后,打开login.jsp,使用firebug或chrome会发现,即使没有登录,我们也会有一个JSESSIONID,这是由服务器端在会话开始是通过set-cookie来设置的匿 ...

  2. VulnHub CengBox2靶机渗透

    ​本文首发于微信公众号:VulnHub CengBox2靶机渗透,未经授权,禁止转载. 难度评级:☆☆☆☆官网地址:https://download.vulnhub.com/cengbox/CengB ...

  3. IDEA解决SVN频繁弹出登录框

    将HTTP请求改成SVN就可以了,或者请项目经理开启SVN中的HTTP请求

  4. JDK8--07:并行流与串行流

    JDK8中,提供了并行流和串行流,使用parallel()和sequential()来处理,parallel()为并行流sequential()为串行流,两者可以相互转换,以最后一个为准 LongSt ...

  5. JDK8--05:方法引用和构造器引用

    在上一篇文章中,说过JDK8中内置的函数时接口,为了方便使用,JDK8还提供了方法引用和构造器引用,来简化lambda的写法 1.方法引用 方法引用说明:lambda表达式中的方法已经在其他方法中已经 ...

  6. 阿里云centos7安装redis全过程记录

    Redis下载地址:https://redis.io/download(这个连接可能得翻墙查看,但是在centos7服务器上安装过程不需要翻墙,我查看了最新的是redis-4.0.9.tar.gz ) ...

  7. 开放api接口参数 app_id, app_key, app_secret 的理解

    看到知乎上一个回答很形象: app_id, app_key, app_secret:我的身份证,银行卡号,银行卡密码 (完)

  8. 感知融合 awesome list

    感知融合 awesome list 雷达聚类 雷达处理杂波滤除 CFAR (Constant False Alarm Rate):Lee, Jae-Eun, et al. "Harmonic ...

  9. python 如何判断一组数据是否符合正态分布

    正态分布: 若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ) 其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布 判断方法有画图 ...

  10. antd图标库按需加载的插件实现

    前景概要 antd是阿里出品的一款基于antd的UI组件库,使用简单,功能丰富,被广泛应用在中台项目开发中,虽然也出现了彩蛋事故,但不能否认antd本身的优秀,而我们公司在实际工作中也大量使用antd ...