bzoj2301-Problem b
题意
\(T\le 5\times 10^4\) 次询问,每次询问 \(a,b,c,d,k\le 5\times 10^4\),求
\]
分析
重新学了一次(可能跟第一次学没什么区别)莫比乌斯反演相关,这题还是很简单的。问题可以转化为求四次
\]
下面过程中设 \(n\le m\) 。
\sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)=k]&=\sum _{i=1}^n\sum _{j=1}^m\sum _{k|i,k|j}\sum _{d|\frac{i}{k},d|\frac{j}{k}}\mu(d) \\
&=\sum _{d=1}^n\sum _{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum _{j=1}^{\lfloor\frac{m}{k}\rfloor}\mu (d) \\
&=\sum _{d=1}^n\mu (d) \lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor \lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor
\end{aligned}
\]
注意到 \(\lfloor\frac{n}{d}\rfloor\) 这种形式只有 \(2\sqrt n\) 种取值(对于 \(d\le \sqrt n\) ,显然;对于 \(d>\sqrt n\) ,\(\lfloor\frac{n}{d}\rfloor\le \sqrt n\) ,也最多只有 \(\sqrt n\) 种),所以 \(\lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor \lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor\) 最多只有 \(4\sqrt n\) 种取值,跳一下即可做到单次询问 \(O(\sqrt n)\) ,只要预处理 \(\mu\) 函数的前缀和即可。
代码
#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x=0,f=1;
char c=getchar_unlocked();
for (;!isdigit(c);c=getchar_unlocked()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar_unlocked()) x=x*10+c-'0';
return x*f;
}
typedef long long giant;
const int maxn=5e4+1;
bool np[maxn];
int p[maxn],mu[maxn],ps=0;
giant calc(int n,int m) {
giant ret=0;
if (n>m) swap(n,m);
for (int i=1,j;i<=n;i=j+1) {
j=min(n/(n/i),m/(m/i));
ret+=(giant)(mu[j]-mu[i-1])*(n/i)*(m/i);
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
mu[1]=1;
for (int i=2;i<maxn;++i) {
if (!np[i]) p[++ps]=i,mu[i]=-1;
for (int j=1;j<=ps && i*p[j]<maxn;++j) {
np[i*p[j]]=true;
if (i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for (int i=2;i<maxn;++i) mu[i]+=mu[i-1];
int T=read();
while (T--) {
int a=read(),b=read(),c=read(),d=read(),k=read();
a=(a-1)/k,b/=k,c=(c-1)/k,d/=k;
giant ans=(calc(b,d)-calc(b,c))-(calc(a,d)-calc(a,c));
printf("%lld\n",ans);
}
return 0;
}
bzoj2301-Problem b的更多相关文章
- [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]
题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...
- [bzoj2301]Problem b莫比乌斯反演+分块优化
题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 【bzoj2301】 HAOI2011—Problem b
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i= ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301:[HAOI2011]Problem b——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 https://www.luogu.org/problemnew/show/P2522 对于给 ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...
- 【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]
Problem b Time Limit: 50 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次 ...
随机推荐
- linux IPC机制学习博客
要求 研究Linux下IPC机制:原理,优缺点,每种机制至少给一个示例,提交研究博客的链接 - 共享内存 - 管道 - FIFO - 信号 - 消息队列 研究博客 管道(PIPE) 管道(PIPE): ...
- [2016北京集训试题7]thr-[树形dp+树链剖分+启发式合并]
Description Solution 神仙操作orz. 首先看数据范围,显然不可能是O(n2)的.(即绝对不是枚举那么简单的),我们考虑dp. 定义f(x,k)为以x为根的子树中与x距离为k的节点 ...
- 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列
[LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...
- 【python笔记】python中的list、tuple、set、dict用法简析
list list是一种有序的集合(或称作列表),可以很方便地添加和删除其中的元素. >>> classmates = ['Michael', 'Bob', 'Tracy'] 可通过 ...
- Windows 实例搭建的 FTP 在外网无法连接和访问
外网无法连接和访问 Windows 实例搭建的 FTP,这种情况可能是由于以下两种原因导致的: 安全组拦截外网访问 防火墙拦截 FTP 进程 安全组拦截外网访问 这种情况下,可以尝试新建一条入方向的安 ...
- Windows下Mongo分片及集群
这里简单介绍一下windows下mongodb的分片设置和集群搭建,希望能够为迷茫的新手起到一点点作用.其实windows下与linux下思路是一致的,只是绑定时的ip,与端口号不同,linux下可以 ...
- Hyper-V虚拟机联网设置
转自:http://www.3lian.com/edu/2012/12-22/50492.html Windows 8中内置的Hyper-V管理器可以说给许多人带来了惊喜!在Hyper-V管理器强大的 ...
- 用 Python 构建一个极小的区块链
虽然有些人认为区块链是一个早晚会出现问题的解决方案,但是毫无疑问,这个创新技术是一个计算机技术上的奇迹.那么,究竟什么是区块链呢? 区块链 以比特币(Bitcoin)或其它加密货币按时间顺序公开地记录 ...
- preg_replace 以及弃用的e
preg_replace (PHP 4, PHP 5) preg_replace — 执行一个正则表达式的搜索和替换 说明¶ mixed preg_replace ( mixed $pattern , ...
- “Hello World!”团队第九次会议
今天是我们团队“Hello World!”团队召开的第九次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 20 ...