题目是这样的,游戏规则,每个人轮流将二维空间上的皇后往下,往左或者往斜下45度的方向移动。

谁第一个移动到0,0的位置就获胜。

题目给定你若干个矩形,求矩形中任取一点且该点必胜的概率有概率。

其实是这样的,我们需要把所有的必败点的坐标都求出来。发现在10^6以内的必败点的数量只有70多万个,这样我们可以全部存下来。

其实必败点是这样求得,第一个点为(0,0),接下来第i个点的坐标为(x,y),其中x为第一个没有在前面的坐标中间出现过的数字,y=x+i。

这样就把所有的必败的点都求出来了呢,同时由于对称性,我们要把另外一边的点也全部求出来。

这样相当于是存到了两个数组里面。

接下来的就是询问了。对于每个矩形,由于点的坐标是递增的,所以我们可以二分求出边界的满足矩形条件的点,然后就可以瞬间知道有多少个点在矩形里面了。

嗯,题目大概就是这样的。  好好理解吧,很好的一个博弈题目。

#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 1000100
#define ll long long
using namespace std; bool b[maxn];
int x[][maxn],y[][maxn],cur,n,tot,l,r,mid,T,x1,x2,y1,y2,cas=;
int pos1,pos2;
ll ans,sum,G; ll gcd(ll A,ll B) { return B==?A:gcd(B,A%B); } ll find(int k)
{
l=,r=tot;
while (l<r)
{
mid=(l+r)>>;
if (x1<=x[k][mid] && y1<=y[k][mid]) r=mid;
else l=mid+;
}
pos1=l;
l=,r=tot;
while (l<r)
{
mid=(l+r)>>;
if (x[k][mid]<=x2 && y[k][mid]<=y2) l=mid+;
else r=mid;
}
pos2=l;
return max(,pos2-pos1);
} int main()
{
memset(b,false,sizeof b);
cur=n=x[][]=y[][]=tot=;
b[]=true;
while (cur<maxn)
{
n++;cur++;
while (n<maxn && b[n]) n++;
if (n>=maxn) break;
x[][++tot]=n,y[][tot]=n+cur;
x[][tot]=y[][tot],y[][tot]=x[][tot];
b[n]=true;
if (n+tot>maxn) break;
b[n+tot]=true;
}
scanf("%d",&T);
while (T--)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
ans=find()+find();
if (x1== && y1==) ans--;
sum=(ll)(x2-x1+)*(y2-y1+);
ans=sum-ans;
printf("Board %d: ",++cas);
if (ans==)
{
printf("0 / 1\n");
continue;
}
G=gcd(ans,sum);
ans/=G,sum/=G;
printf("%lld / %lld\n",ans,sum);
}
}

UVA11735_Corner the Queens的更多相关文章

  1. Jeff Somers's N Queens Solutions 最快的n皇后算法

    /* Jeff Somers * * Copyright (c) 2002 * * jsomers@alumni.williams.edu * or * allagash98@yahoo.com * ...

  2. [CareerCup] 9.9 Eight Queens 八皇后问题

    9.9 Write an algorithm to print all ways of arranging eight queens on an 8x8 chess board so that non ...

  3. lintcode 中等题:N Queens II N皇后问题 II

    题目: N皇后问题 II 根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局. 样例 比如n=4,存在2种解决方案 解题: 和上一题差不多,这里只是求数量,这个题目定义全局变量,递 ...

  4. lintcode 中等题:N Queens N皇后问题

    题目: N皇后问题 n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击.<不同行,不同列,不同对角线> 给定一个整数n,返回所有不同的n皇后问题的解决方案. 每个解决方案 ...

  5. Codeforces Gym 100650D Queens, Knights and Pawns 暴力

    Problem D: Queens, Knights and PawnsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu ...

  6. Poj 3239 Solution to the n Queens Puzzle

    1.Link: http://poj.org/problem?id=3239 2.Content: Solution to the n Queens Puzzle Time Limit: 1000MS ...

  7. Pat1128:N Queens Puzzle

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  8. PAT 1128 N Queens Puzzle

    1128 N Queens Puzzle (20 分)   The "eight queens puzzle" is the problem of placing eight ch ...

  9. kolla queens on centos7.5 -all in one

    目录 环境准备 开始配置 快照,快照,快照 pull镜像并部署 登录配置OpenStack 环境准备 我这里用workstation创建了一个虚拟机,安装centos7.5 mini系统,这台虚拟机上 ...

随机推荐

  1. 20155229付钰涵-虚拟机安装及LINUX命令学习

    安装Ubuntu遇到的问题 问题一: 新建虚拟电脑的版本只有32-bit,与老师所给教程中的64-bit不符.为此我上百度搜寻了答案. 第一种方法: 控制面板--程序与功能--启动或关闭windows ...

  2. Maven学习(十六)-----Maven存储库

    什么是Maven资源库? 在 Maven 术语里存储库是一个目录,即目录中保存所有项目的 jar 库,插件或任何其他项目特定文件,并可以容易由 Maven 使用. Maven库中有三种类型 local ...

  3. 记Thinkpad的一次扩容升级经历

    俗话说:" 工欲善其事,必先利其器" 阅读目录: 背景 目标 准备 友情提示 制作引导盘 分区及备份 拆机装盘 重装系统 写在结束的 参考资料 背景: 作为一个近六年的IT从业Co ...

  4. 动态权限<一>基本介绍

    android 6.0以上为了保护用户的隐私,和以往被人诟病的权限机制,确立了新的权限机制.从 Android 6.0(API 级别 23)开始,用户开始在应用运行时向其授予权限,而不是在应用安装时授 ...

  5. ----------BMI指数小程序----------

    # 1.创建并输出菜单, 菜单是不可变的. 所以使用元组# menus = ("1, 录入", "2, 查询", "3, 删除", &quo ...

  6. 理解学习Springboot(一)

    Springboot有何优势呢,网上一大推,这里就不写了. 一.配置maven 1.在maven官网下载maven,http://maven.apache.org/download.cgi 2.将下载 ...

  7. php oci8 小试

    Oracle_db.class.php <?phpclass Oracle_db{    public $link;    public function __construct(){      ...

  8. 三、Django之请求与响应-Part 1

    一.新建项目 进入你指定的项目保存目录,然后运行下面的命令: $ django-admin startproject mysite 这将在目录下生成一个mysite目录,也就是你的这个Django项目 ...

  9. halcon中关于文本的创建以及写入

    原文链接:http://blog.sina.com.cn/s/blog_61cc743001017nxr.html#FileName 1.open_file( : : FileName, FileTy ...

  10. 2.1 Oracle之DML的SQL语句之单表查询以及函数

    1.SQL简介 对于不同的数据库来说,SQL语句是相通的,关系型数据库都以SQL语句为操作的标准,只是相应的数据库对应的函数不相同. SQL(Structured Query Language,结构化 ...