UVA11735_Corner the Queens
题目是这样的,游戏规则,每个人轮流将二维空间上的皇后往下,往左或者往斜下45度的方向移动。
谁第一个移动到0,0的位置就获胜。
题目给定你若干个矩形,求矩形中任取一点且该点必胜的概率有概率。
其实是这样的,我们需要把所有的必败点的坐标都求出来。发现在10^6以内的必败点的数量只有70多万个,这样我们可以全部存下来。
其实必败点是这样求得,第一个点为(0,0),接下来第i个点的坐标为(x,y),其中x为第一个没有在前面的坐标中间出现过的数字,y=x+i。
这样就把所有的必败的点都求出来了呢,同时由于对称性,我们要把另外一边的点也全部求出来。
这样相当于是存到了两个数组里面。
接下来的就是询问了。对于每个矩形,由于点的坐标是递增的,所以我们可以二分求出边界的满足矩形条件的点,然后就可以瞬间知道有多少个点在矩形里面了。
嗯,题目大概就是这样的。 好好理解吧,很好的一个博弈题目。
#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 1000100
#define ll long long
using namespace std; bool b[maxn];
int x[][maxn],y[][maxn],cur,n,tot,l,r,mid,T,x1,x2,y1,y2,cas=;
int pos1,pos2;
ll ans,sum,G; ll gcd(ll A,ll B) { return B==?A:gcd(B,A%B); } ll find(int k)
{
l=,r=tot;
while (l<r)
{
mid=(l+r)>>;
if (x1<=x[k][mid] && y1<=y[k][mid]) r=mid;
else l=mid+;
}
pos1=l;
l=,r=tot;
while (l<r)
{
mid=(l+r)>>;
if (x[k][mid]<=x2 && y[k][mid]<=y2) l=mid+;
else r=mid;
}
pos2=l;
return max(,pos2-pos1);
} int main()
{
memset(b,false,sizeof b);
cur=n=x[][]=y[][]=tot=;
b[]=true;
while (cur<maxn)
{
n++;cur++;
while (n<maxn && b[n]) n++;
if (n>=maxn) break;
x[][++tot]=n,y[][tot]=n+cur;
x[][tot]=y[][tot],y[][tot]=x[][tot];
b[n]=true;
if (n+tot>maxn) break;
b[n+tot]=true;
}
scanf("%d",&T);
while (T--)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
ans=find()+find();
if (x1== && y1==) ans--;
sum=(ll)(x2-x1+)*(y2-y1+);
ans=sum-ans;
printf("Board %d: ",++cas);
if (ans==)
{
printf("0 / 1\n");
continue;
}
G=gcd(ans,sum);
ans/=G,sum/=G;
printf("%lld / %lld\n",ans,sum);
}
}
UVA11735_Corner the Queens的更多相关文章
- Jeff Somers's N Queens Solutions 最快的n皇后算法
/* Jeff Somers * * Copyright (c) 2002 * * jsomers@alumni.williams.edu * or * allagash98@yahoo.com * ...
- [CareerCup] 9.9 Eight Queens 八皇后问题
9.9 Write an algorithm to print all ways of arranging eight queens on an 8x8 chess board so that non ...
- lintcode 中等题:N Queens II N皇后问题 II
题目: N皇后问题 II 根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局. 样例 比如n=4,存在2种解决方案 解题: 和上一题差不多,这里只是求数量,这个题目定义全局变量,递 ...
- lintcode 中等题:N Queens N皇后问题
题目: N皇后问题 n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击.<不同行,不同列,不同对角线> 给定一个整数n,返回所有不同的n皇后问题的解决方案. 每个解决方案 ...
- Codeforces Gym 100650D Queens, Knights and Pawns 暴力
Problem D: Queens, Knights and PawnsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu ...
- Poj 3239 Solution to the n Queens Puzzle
1.Link: http://poj.org/problem?id=3239 2.Content: Solution to the n Queens Puzzle Time Limit: 1000MS ...
- Pat1128:N Queens Puzzle
1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...
- PAT 1128 N Queens Puzzle
1128 N Queens Puzzle (20 分) The "eight queens puzzle" is the problem of placing eight ch ...
- kolla queens on centos7.5 -all in one
目录 环境准备 开始配置 快照,快照,快照 pull镜像并部署 登录配置OpenStack 环境准备 我这里用workstation创建了一个虚拟机,安装centos7.5 mini系统,这台虚拟机上 ...
随机推荐
- 20155334 实验四:Android程序设计
20155334实验四:Android程序设计 实验内容 基于Android Studio开发简单的Android应用并部署测试; 了解Android组件.布局管理器的使用: 掌握Android中事件 ...
- WPF GDI+字符串绘制成图片(一)
原文:WPF GDI+字符串绘制成图片(一) 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/BYH371256/article/details/83 ...
- 可以用来求急的开源项目es5-shim
最近发现一个JS库,无法在IE8中运行.比较纠结,又不想另找个库代替它,还好发现了这玩意. 它的作用:就给傻逼浏览器做兼容性,使得傻逼浏览器可以支持一些 es5 的 api ...
- autoreleasepool 自动释放池的理解
常见的面试题:以下代码存在什么样的问题?应该如何改进? for (int i = 0; i < 100000; i++) { NSString *str = @"abc"; ...
- 牛客小白月赛9 A签到(分数取模,逆元)
传送门 对分母求一下逆元,把除法取模变成乘法取模,逆元介绍看这里 这种方法只适合模为质数的情况 #include<bits/stdc++.h> using namespace std; ; ...
- linux部署MantisBT(一)部署apache
一.部署apache 1.下载apache安装包及依赖包 http://httpd.apache.org/download.cgi#apache24(apache2)http://apr.apache ...
- Linux下的计算器(bc、expr、dc、echo、awk)知多少?
linux 其他知识目录 原文链接:http://blog.chinaunix.net/uid-24673811-id-1760837.html linux下的三个命令可以用来作计算,下面一一讲解用法 ...
- UI优秀框架(库)
1.vux 官网:https://doc.vux.li/zh-CN/ Github:https://github.com/airyland/vux 13818 Stars 3064 Forks ...
- Scrum立会报告+燃尽图(十一月二十六日总第三十四次):上传β阶段展示视频
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2413 项目地址:https://git.coding.net/zhang ...
- Scrum立会报告+燃尽图(十月十二日总第三次):视频相关工作
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2190 Scrum立会master:孙赛佳 一.小组介绍 组长:付佳 组员 ...