bzoj2969 矩形粉刷 概率期望
题解:
因为期望线性可加,所以可以对每个方格单独考虑贡献。
每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)
每个方格至少被粉刷过一次的概率=1 - 一次都没被粉刷过的概率
因为每次选择都不互相影响,因此我们实际上只需要计算对于每一次选择而言,每个方格不被粉刷的概率,设这个概率为t,那么k次都没被粉刷过的概率就为$t^{k}$.
对于一个方格而言,如果它在一次选择中不被粉刷,那么就意味这这次选中的2个点都在它的同一个方向(左右上下)。但是这样算会把一些区域的方案计算2次(例如左边和上面这2个矩形的重叠部分内的方案就被计算了2次,因此再减去这些重叠部分的贡献即可)
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define RL register long long
#define h(x) (1.0 * x * x)//这里要乘1.0转double
#define LL long long LL n, m, k; double ans; void pre(){
scanf("%lld%lld%lld", &k, &n, &m);
} double qpow(double x, int have)
{
double rnt = ;
while(have)
{
if(have & ) rnt *= x;
x *= x, have >>= ;
}
return rnt;
} void work()
{
double all = h(n * m);
for(R i = ; i <= n; i ++)
{
for(R j = ; j <= m; j ++)
{
double t = h((i - ) * m) + h((n - i) * m) + h((j - ) * n) + h((m - j) * n);
t -= h((i - ) * (j - )) + h((i - ) * (m - j)) + h((n - i) * (j - )) + h((n - i) * (m - j));
//printf("%lf\n", t);
ans += - qpow(t / all, k);
}
}
if(ans - (int) ans >= 0.499999) printf("%lld\n", ((LL)ans) + );
else printf("%lld\n", (LL) ans);
} int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return ;
}
bzoj2969 矩形粉刷 概率期望的更多相关文章
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
- bzoj 2969: 矩形粉刷 概率期望+快速幂
还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...
- 【BZOJ2969】矩形粉刷 概率+容斥
[BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...
- BZOJ 2969: 矩形粉刷(期望)
BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...
- bzoj2969 矩形粉刷
学习一波用markdown写题解的姿势QAQ 题意 给你一个w*h的矩形网格,每次随机选择两个点,将以这两个点为顶点的矩形内部的所有小正方形染黑,问染了k次之后期望有多少个黑色格子. 分析 一开始看错 ...
- bzoj2969矩形粉刷
题解: 和前面那个序列的几乎一样 容斥之后变成求不覆盖的 然后再像差分的矩形那样 由于是随便取的所以这里不用处理前缀和直接求也可以 代码: #include <bits/stdc++.h> ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- uvalive 7331 Hovering Hornet 半平面交+概率期望
题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> ...
- OI队内测试一【数论概率期望】
版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题 ...
随机推荐
- 海思NB-IOT的SDK里面写KV键值对值掉电保存参数
1. 写函数,ICCID_CTRL_KEY 这个是键,有些是海思已经使用的,所以自己定义的时候要错开,函数的第二个参数是数据指针,第三个参数是数据长度 #define ICCID_CTRL_KEY ...
- 七、EnterpriseFrameWork框架基础功能之字典数据配置管理
框架中的“通用字典数据配置管理”主要解决的问题是,所有的行业软件给客户实施第一步一般都是基础数据的维护,一个系统的字典是少不了的,涉及业务范围越广字典就越多,如果每一个字典数据都做一个界面来进行维护数 ...
- AtCoder Regular Contest 101 D - Median of Medians
二分答案 然后前缀和+树状数组来判断这个答案是否大于等于数 如果我们对于一个查询,如果小于这个数令为1,大于这个数领为-1 将所有前缀和放在树状数组中,就可以查询所有sum_{l} < sum_ ...
- Laya 自适应 不拉伸处理
Laya.init(640, Laya.Browser.width / 640 * 1028, WebGL); Laya.stage.scaleMode = "fixedwidth" ...
- 【ZABBIX】Zabbix触发器的告警原理及创建方法
概述: 触发器中的表达式使用很灵活,我们可以创建一个复杂的逻辑测试监控,触发器表达式形式如下: {<server>:<key>.<function>(& ...
- docker应用容器化准则—12 factor
在云的时代,越来越多的传统应用需要迁移到云环境下,新应用也要求能适应云的架构设计和开发模式.而12-factor提供了一套标准的云原生应用开发的最佳原则. 在容器云项目中应用容器化主要参考12-Fac ...
- sqli-labs学习笔记 DAY1
DAY 1 准备工作 安装phpstudy 安装配置sqli-labs 学习笔记 SQL语句的注释:–, # +在URL经过编码后会编码为空格 SQL语句的查询语句:SELECT column_nam ...
- MSCOCO - pycocoDemo 学习版
Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb https://git ...
- 常用 php server
php编程中经常需要用到一些服务器的一些资料,我把常用的用高亮的方式贴出来,其余的放在后面.方便以后查阅 复制代码代码如下: $_SERVER['HTTP_ACCEPT_LANGUAGE']/ ...
- Java变量声明,实例化,问题
1.变量在输出前必须实例化,这是因为只有声明,没有分配内存空间 在这种情况下会报错 2.实例化后,尽管没有赋值,可能是默认了吧,但也不会输出null,什么也没有输出 上面的理解可能是错的,a赋值了,就 ...