CF 160D Edges in MST 最小生成树的性质,寻桥,缩点,批量处理 难度:3
http://codeforces.com/problemset/problem/160/D
这道题要求哪条边存在于某个最小生成树中,哪条边不存在于最小生成树中,哪条边绝对存在于最小生成树中
明显桥边一定存在于所有最小生成树中,然而怎么处理存在某个最小生成树的边呢?
借助kruskal算法的性质,由小到大,每次处理同一权值的边,如果边连接的点已经联通就不要管,否则那些处理的边一定存在于某最小生成树上
批量处理的思想很巧妙
#include <cstdio>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
const int maxn=2e5+5;
int first[maxn];
struct edge{
int t,ind,nxt;
}e[maxn];
int from[maxn],to[maxn],cost[maxn],index[maxn];
int sta[maxn];
int n,m,len; void addedge(int f,int t,int ind,int i){
e[i].nxt=first[f];
first[f]=i;
e[i].t=t;
e[i].ind=ind;
}
int par[maxn],num[maxn];
int fnd(int x){return par[x]==x?x:par[x]=fnd(par[x]);}
void unit(int a,int b){
if(fnd(a)==fnd(b))return;
num[fnd(b)]+=num[fnd(a)];
num[fnd(a)]=0;
par[fnd(a)]=fnd(b);
}
bool cmp(int a,int b) {return cost[a]<cost[b];} int dfn[maxn],low[maxn],cnt;
void dfs(int s,int f){
dfn[s]=low[s]=++cnt;
for(int p=first[s];p!=0;p=e[p].nxt){
int t=e[p].t;
if(p==(((f-1)^1)+1))continue;
if(dfn[t]==0){
dfs(t,p);
if(low[t]>dfn[s]){
sta[e[p].ind]=2;
}
else{
low[s]=min(low[s],low[t]);
}
}
else {
low[s]=min(low[s],dfn[t]);
}
}
} int st[maxn],tail;
void kruskal2(){
sort(index,index+m,cmp);
for(int i=0;i<m&&num[fnd(1)]<n;){
int j=i;
while(cost[index[i]]==cost[index[j]]&&j<m){j++;}
for(int k=i;k<j;k++){
int indk=index[k];
if(fnd(from[indk])!=fnd(to[indk])){
st[tail++]=indk;
sta[indk]=1;
}
}
for(int p=0;p<tail;p++){
int tp=st[p];
int f=fnd(from[tp]),t=fnd(to[tp]);
addedge(f,t,tp,++len);
addedge(t,f,tp,++len);
}
for(int p=0;p<tail;p++){
int tp=st[p];
int f=fnd(from[tp]),t=fnd(to[tp]);
dfs(f,0);
unit(f,t);
}
cnt=0;
len=0;
for(int p=0;p<tail;p++){
int tp=st[p];
int f=fnd(from[tp]),t=fnd(to[tp]);
first[f]=first[t]=0;
dfn[f]=dfn[t]=0;
} i=j;
tail=0;
}
} int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){par[i]=i;num[i]=1;} for(int i=0;i<m;i++){
scanf("%d%d%d",from+i,to+i,cost+i);
index[i]=i;
}
kruskal2(); for(int i=0;i<m;i++){
if(sta[i]==2)puts("any");
else if(sta[i]==1)puts("at least one");
else puts("none");
}
return 0;
}
CF 160D Edges in MST 最小生成树的性质,寻桥,缩点,批量处理 难度:3的更多相关文章
- Codeforces 160D Edges in MST tarjan找桥
Edges in MST 在用克鲁斯卡尔求MST的时候, 每个权值的边分为一类, 然后将每类的图建出来, 那些桥就是必须有的, 不是桥就不是必须有. #include<bits/stdc++.h ...
- [CF160D]Edges in MST (最小生成树+LCA+差分)
待填坑 Code //CF160D Edges in MST //Apr,4th,2018 //树上差分+LCA+MST #include<cstdio> #include<iost ...
- Codeforces 160 D. Edges in MST
\(>Codeforces \space 160 D. Edges in MST<\) 题目大意 : 给出一张带权无向图,求对于这张图上的每一条边,其是必然存在于每一种最小生成树中,还是至 ...
- [CF160D]Edges in MST
[CF160D]Edges in MST 题目大意: 一个\(n(n\le10^5)\)个点,\(m(m\le10^5)\)条边的连通图.对于图中的每条边,判断它与该图最小生成树的关系: 在该图所有的 ...
- MST最小生成树
首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...
- [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)
1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 802 Solved: 344[Submit][Sta ...
- 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)
[BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...
- [poj1679]The Unique MST(最小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28207 Accepted: 10073 ...
- 【KM】BZOJ1937 [Shoi2004]Mst 最小生成树
这道题拖了好久因为懒,结果1A了,惊讶∑( 口 || [题目大意] 给定一张n个顶点m条边的有权无向图.现要修改各边边权,使得给出n-1条边是这张图的最小生成树,代价为变化量的绝对值.求最小代价之和. ...
随机推荐
- Python多进程编程(转)
原文:http://www.cnblogs.com/kaituorensheng/p/4445418.html 阅读目录 1. Process 2. Lock 3. Semaphore 4. Even ...
- 13.Github使用
我们一直用GitHub作为免费的远程仓库,如果是个人的开源项目,放到GitHub上是完全没有问题的.其实GitHub还是一个开源协作社区,通过GitHub,既可以让别人参与你的开源项目,也可以参与别人 ...
- 第1章 1.6计算机网络概述--OSI参考模型
ISO七层模式:国际标准组织对互联网通信规则进行的定义. 7.应用层:所有能产生网络流量的程序,如:QQ. 6.表示层:传输前对数据进行进行处理,是一种数据处理的规则,如:加密.压缩.传输二进制(图片 ...
- (1.5)DML增强功能-try catch及事务控制
一.事务控制与Try Catch结合 当 SET XACT_ABORT 为 ON 时,如果执行 Transact-SQL 语句产生运行时错误,则整个事务将终止并回滚. 当 SET XACT_ABORT ...
- mysql 数据操作 单表查询 limit 限制查询的记录数
mysql; +----+-----------+------+-----+------------+---------+--------------+------------+--------+-- ...
- python 面向对象 字典 有序字典
和原来字典一模一样 把dict 传进去 相当于这个类就是一个字典 # 把dict 传进去 相当于这个类就是一个字典 class Mydict(dict): pass d = Mydict() prin ...
- 005-ant design -结合echart
原因: ant design本省提供图标组件,是基于 BizCharts ,但是使用有些限制比如:TimelineChart带有时间轴的图表.使用 TimelineChart 组件可以实现带有时间轴的 ...
- Web安全大揭秘
web安全大揭秘,通常会有那些web安全问题呢? 1,xss 2,sql注入 3,ddos攻击
- 转:CentOS设置程序开机自启动的方法
转自:http://www.centos.bz/2011/09/centos-setup-process-startup-boot/ 1.把启动程序的命令添加到/etc/rc.d/rc.local文件 ...
- SecureCRT 下载,安装,绝佳配色,实用配置,上传下载配置合集
SecureCRT 下载,安装,绝佳配色,实用配置,上传下载配置合集 chocoball 发布于 2年前,共有 3 条评论 SecureCRT 是一款支持 SSH2.SSH1.Telnet.Telne ...