Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作
%测试数据 'ex1data1.txt', 第一列为 population of City in 10,000s, 第二列为 Profit in $10,000s
1 6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
%绘制实际数据图像——人口和利润的关系图
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, ); y = data(:, );
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
%plotData()函数实现
function plotData(x, y) figure; % open a new figure window
plot(x, y, 'rx', 'MarkerSize', ); %Set the size of Points('MarkerSize', )
ylabel('profit in $10,1000s');
xlabel('population of City in 10,000s'); end
%% =================== Part : Gradient descent
fprintf('Running Gradient Descent ...\n') X = [ones(m, ), data(:,)]; % Add a column of ones to x theta = zeros(, ); % initialize fitting parameters % Some gradient descent settings
iterations = ; %迭代次数
alpha = 0.01; %learning rate % compute and display initial cost
computeCost(X, y, theta) %y是真实的值
% Compute Cost for linear regression
% cost Function函数实现___利用矩阵操作进行!!
function J = computeCost(X, y, theta) % Initialize some useful values
m = length(y); % number of training examples
J = ; % Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. % X = [ ones(m, ), data(:, ) ], theta = [ th1; th2]
predictions = X * theta; %矩阵操作--预测函数
sqrError = (predictions - y).^;
J = sum(sqrError) / (*m); end
%运行梯度下降算法
% run gradient descent theta = gradientDescent(X, y, theta, alpha, iterations); % print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(), theta());
1 %梯度下降算法实现 gradientDescent(X, y, theta, alpha, iterations)
%X-training example,y-实际数值,alpha-learning rate
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters
predictions = X * theta; %预测值h(xi)--利用了矩阵运算
sqrError = (predictions - y); %预测值 - 实际值 % Simultaneously update(同时更新thetaj) thetaj for all j.
% alpha - learning rate, '.*'---是内积(矩阵对应元素相乘)
theta1 = theta() - alpha * (/m) * sum(sqrError .* X(:,));
theta2 = theta() - alpha * (/m) * sum(sqrError .* X(:,));
theta() = theta1;
theta() = theta2; % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); %disp(J_history); %增加输出语句,方便调试 end end
1 %绘制拟合曲线
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,), X*theta, '-')
legend('Training data', 'Linear regression') %添加图例
hold off % don't overlay any more plots on this figure
1 % Predict values for population sizes of 35,000 and 70,000
2 %利用求出的拟合参数--预测新值,利用矩阵运算
predict1 = [, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*); predict2 = [, ] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*); fprintf('Program paused. Press enter to continue.\n');
pause;
1 %计算不同 theta参数下, J(θ)值的变化, 绘制图像
2 %% ============= Part 4: Visualizing J(theta_0, theta_1) ============= fprintf('Visualizing J(theta_0, theta_1) ...\n') % Grid over which we will calculate J
%linspace(x, y, n)--在(x,y)区间内均匀生成n个数
theta0_vals = linspace(-, , );
theta1_vals = linspace(-, , ); % initialize J_vals to a matrix of 's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = :length(theta0_vals)
for j = :length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals';
% Surface plot
figure; %surf(X,Y,Z)--creates the surface plot from corresponding(对应值) value in X, Y,Z (default: color is proportional(成正比) to surface height.) surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');
% Contour plot----轮廓图的绘制
figure; % Plot J_vals as contours spaced logarithmically between 0.01 and contour(theta0_vals, theta1_vals, J_vals, logspace(-, , ))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(), theta(), 'rx', 'MarkerSize', , 'LineWidth', );


绘图效果如上。
Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作的更多相关文章
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第一讲. Linear Regression with one variable
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...
- 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)
从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...
- MachineLearning ---- lesson 2 Linear Regression with One Variable
Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...
- [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...
随机推荐
- CentOS编译安装Apache 2.4.x时报错:configure: error: Bundled APR requested but not found at ./srclib/. Download and unpack the corresponding apr and apr-util packages to ./srclib/.
先前按照这篇文章“CentOS6.x编译安装LAMP(2):编译安装 Apache2.2.22”去编译安装Apache2.2.x版本时,安装得挺顺利,今天换成Apache2.4.x版本,安装方法一样, ...
- 实体ip 虚拟ip 固定ip 动态ip
实体 IP:在网络的世界里,为了要辨识每一部计算机的位置,因此有了计算机 IP 位址的定义.一个 IP 就好似一个门牌!例如,你要去微软的网站的话,就要去『 207.46.197.101 』这个 IP ...
- COM中的REFIID小解【转】
是在浏览器项目中的IDispatch调用QueryInterface( [in] REFIID riid, [out] void **ppvObject); 认识的REFIID,由于看声明说r ...
- jQuery Colorbox插件
http://www.open-open.com/lib/view/open1338084606042.html jQuery Colorbox是一款非常好的内容播放插件.它集弹出层.幻灯片播放功能于 ...
- Win7平台下React-Native开发之Android项目打包发布流程
一.bundle文件 React-Native开发步骤中,有一个步骤是使用命令 react-native start 去启动一个基于Node.js的服务,名字为packager.这个packager的 ...
- 推荐ubuntu下的画图工具
今天发现ubuntu下面也有类似于windows画图的画图工具,功能也比较强大,支持各种格式的图片,也有各种工具,非常方便,安装的方法是: sudo apt-get install kolourpai ...
- word20161201
http://baike.baidu.com/link?url=ZTTkA-suMlJNGb2AeNBE2E6MZQZwjkvWXKgmUpeLBIrCfC-k32cGJOJLrtDlLXjsTfkD ...
- BSON 1.0版本规范(翻译)
BSON 1.0版本规范 本文翻译自 http://bsonspec.org/spec.html BSON是用于存储零个或多个键/值对为一个单一的实体的一个二进制格式.我们称这个实体为文档(Docum ...
- espcms列表页ajax获取内容 - 并初始化swiper
<link rel="stylesheet" href="swiper.min.css" type="text/css" media= ...
- 常见计算机基础笔试题总结quickstart
[本文链接] 1. 以下是一颗平衡二叉树,请画出插入键值3以后的这颗平衡二叉树. 分析:考察平衡二叉树的基本操作,插入3变成不平衡,需要节点5右旋一次,节点2左旋一次.. 2. 表达式X=A+(B*( ...