Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作
%测试数据 'ex1data1.txt', 第一列为 population of City in 10,000s, 第二列为 Profit in $10,000s
1 6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
%绘制实际数据图像——人口和利润的关系图
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, ); y = data(:, );
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
%plotData()函数实现
function plotData(x, y) figure; % open a new figure window
plot(x, y, 'rx', 'MarkerSize', ); %Set the size of Points('MarkerSize', )
ylabel('profit in $10,1000s');
xlabel('population of City in 10,000s'); end
%% =================== Part : Gradient descent
fprintf('Running Gradient Descent ...\n') X = [ones(m, ), data(:,)]; % Add a column of ones to x theta = zeros(, ); % initialize fitting parameters % Some gradient descent settings
iterations = ; %迭代次数
alpha = 0.01; %learning rate % compute and display initial cost
computeCost(X, y, theta) %y是真实的值
% Compute Cost for linear regression
% cost Function函数实现___利用矩阵操作进行!!
function J = computeCost(X, y, theta) % Initialize some useful values
m = length(y); % number of training examples
J = ; % Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. % X = [ ones(m, ), data(:, ) ], theta = [ th1; th2]
predictions = X * theta; %矩阵操作--预测函数
sqrError = (predictions - y).^;
J = sum(sqrError) / (*m); end
%运行梯度下降算法
% run gradient descent theta = gradientDescent(X, y, theta, alpha, iterations); % print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(), theta());
1 %梯度下降算法实现 gradientDescent(X, y, theta, alpha, iterations)
%X-training example,y-实际数值,alpha-learning rate
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters
predictions = X * theta; %预测值h(xi)--利用了矩阵运算
sqrError = (predictions - y); %预测值 - 实际值 % Simultaneously update(同时更新thetaj) thetaj for all j.
% alpha - learning rate, '.*'---是内积(矩阵对应元素相乘)
theta1 = theta() - alpha * (/m) * sum(sqrError .* X(:,));
theta2 = theta() - alpha * (/m) * sum(sqrError .* X(:,));
theta() = theta1;
theta() = theta2; % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); %disp(J_history); %增加输出语句,方便调试 end end
1 %绘制拟合曲线
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,), X*theta, '-')
legend('Training data', 'Linear regression') %添加图例
hold off % don't overlay any more plots on this figure
1 % Predict values for population sizes of 35,000 and 70,000
2 %利用求出的拟合参数--预测新值,利用矩阵运算
predict1 = [, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*); predict2 = [, ] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*); fprintf('Program paused. Press enter to continue.\n');
pause;
1 %计算不同 theta参数下, J(θ)值的变化, 绘制图像
2 %% ============= Part 4: Visualizing J(theta_0, theta_1) ============= fprintf('Visualizing J(theta_0, theta_1) ...\n') % Grid over which we will calculate J
%linspace(x, y, n)--在(x,y)区间内均匀生成n个数
theta0_vals = linspace(-, , );
theta1_vals = linspace(-, , ); % initialize J_vals to a matrix of 's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = :length(theta0_vals)
for j = :length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals';
% Surface plot
figure; %surf(X,Y,Z)--creates the surface plot from corresponding(对应值) value in X, Y,Z (default: color is proportional(成正比) to surface height.) surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');
% Contour plot----轮廓图的绘制
figure; % Plot J_vals as contours spaced logarithmically between 0.01 and contour(theta0_vals, theta1_vals, J_vals, logspace(-, , ))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(), theta(), 'rx', 'MarkerSize', , 'LineWidth', );


绘图效果如上。
Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作的更多相关文章
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第一讲. Linear Regression with one variable
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...
- 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)
从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...
- MachineLearning ---- lesson 2 Linear Regression with One Variable
Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...
- [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...
随机推荐
- PHP团队 编码规范 & 代码样式风格规范
一.基本约定 1.源文件 (1).纯PHP代码源文件只使用 <?php 标签,省略关闭标签 ?> : (2).源文件中PHP代码的编码格式必须是无BOM的UTF-8格式: (3).使用 U ...
- 如何设计PHP业务模块(函数/方法)返回结果的结构?
如题:如何设计业务模块返回结果的结构? 一个业务函数/方法执行后,对外输出数据的结构通常有以下几种: 1.返回数字,如 成功时返回 0,失败时返回 -1,有的还会用一个全局变量输出错误信息: < ...
- Swift实战之2048小游戏
上周在图书馆借了一本Swift语言实战入门,入个门玩一玩^_^正好这本书的后面有一个2048小游戏的实例,笔者跟着实战了一把. 差不多一周的时间,到今天,游戏的基本功能已基本实现,细节我已不打算继续完 ...
- php综合应用
php面试题之五--PHP综合应用(高级部分) 五.PHP综合应用 1.写出下列服务的用途和默认端口(新浪网技术部) ftp.ssh.http.telnet.https ftp:File Transf ...
- error C2504 类的多层继承 头文件包含
error C2504:头文件包含不全 今天碰到了很烦的问题,继承一个类之后,感觉头文件都包含了,可还是出现父类未定义的问题,最后发现,子类的子类在实现时,需要在cpp文件中包含所有他的父类的定义.因 ...
- 解决vs2010“创建或打开C++浏览数据库文件 发生错误”的问题 Microsoft SQL Server Compact 3.5
有网友说打开vs2010安装光盘,搜索 SSCERuntime_x86-chs.msi,重新安装之.于是果断搜索,发现SSCERuntime_x86-chs.msi,另外发现一个SSCEVSTools ...
- Hibernate get和load区别
1.从返回结果上对比:load方式检索不到的话会抛出org.hibernate.ObjectNotFoundException异常get方法检索不到的话会返回null 2.从检索执行机制上对比: ...
- (一)css代码积累——自己经常忘记,但是总记不住的代码
1.透明度设置 90%透明:filter:alpha(opacity=90);-moz-opacity:0.90;-khtml-opacity: 0.90;opacity: 0.90; 80%透明:f ...
- git 教程(8)--删除文件
在Git中,删除也是一个修改操作,我们实战一下,先添加一个新文件test.txt到Git并且提交:
- java代码生成二维码以及解析二维码
package com.test; import java.awt.Color; import java.awt.Graphics2D; import java.awt.image.BufferedI ...