Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作
%测试数据 'ex1data1.txt', 第一列为 population of City in 10,000s, 第二列为 Profit in $10,000s
1 6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
%绘制实际数据图像——人口和利润的关系图
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, ); y = data(:, );
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
%plotData()函数实现
function plotData(x, y) figure; % open a new figure window
plot(x, y, 'rx', 'MarkerSize', ); %Set the size of Points('MarkerSize', )
ylabel('profit in $10,1000s');
xlabel('population of City in 10,000s'); end
%% =================== Part : Gradient descent
fprintf('Running Gradient Descent ...\n') X = [ones(m, ), data(:,)]; % Add a column of ones to x theta = zeros(, ); % initialize fitting parameters % Some gradient descent settings
iterations = ; %迭代次数
alpha = 0.01; %learning rate % compute and display initial cost
computeCost(X, y, theta) %y是真实的值
% Compute Cost for linear regression
% cost Function函数实现___利用矩阵操作进行!!
function J = computeCost(X, y, theta) % Initialize some useful values
m = length(y); % number of training examples
J = ; % Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. % X = [ ones(m, ), data(:, ) ], theta = [ th1; th2]
predictions = X * theta; %矩阵操作--预测函数
sqrError = (predictions - y).^;
J = sum(sqrError) / (*m); end
%运行梯度下降算法
% run gradient descent theta = gradientDescent(X, y, theta, alpha, iterations); % print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(), theta());
1 %梯度下降算法实现 gradientDescent(X, y, theta, alpha, iterations)
%X-training example,y-实际数值,alpha-learning rate
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters
predictions = X * theta; %预测值h(xi)--利用了矩阵运算
sqrError = (predictions - y); %预测值 - 实际值 % Simultaneously update(同时更新thetaj) thetaj for all j.
% alpha - learning rate, '.*'---是内积(矩阵对应元素相乘)
theta1 = theta() - alpha * (/m) * sum(sqrError .* X(:,));
theta2 = theta() - alpha * (/m) * sum(sqrError .* X(:,));
theta() = theta1;
theta() = theta2; % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); %disp(J_history); %增加输出语句,方便调试 end end
1 %绘制拟合曲线
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,), X*theta, '-')
legend('Training data', 'Linear regression') %添加图例
hold off % don't overlay any more plots on this figure
1 % Predict values for population sizes of 35,000 and 70,000
2 %利用求出的拟合参数--预测新值,利用矩阵运算
predict1 = [, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*); predict2 = [, ] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*); fprintf('Program paused. Press enter to continue.\n');
pause;
1 %计算不同 theta参数下, J(θ)值的变化, 绘制图像
2 %% ============= Part 4: Visualizing J(theta_0, theta_1) ============= fprintf('Visualizing J(theta_0, theta_1) ...\n') % Grid over which we will calculate J
%linspace(x, y, n)--在(x,y)区间内均匀生成n个数
theta0_vals = linspace(-, , );
theta1_vals = linspace(-, , ); % initialize J_vals to a matrix of 's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = :length(theta0_vals)
for j = :length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals';
% Surface plot
figure; %surf(X,Y,Z)--creates the surface plot from corresponding(对应值) value in X, Y,Z (default: color is proportional(成正比) to surface height.) surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');
% Contour plot----轮廓图的绘制
figure; % Plot J_vals as contours spaced logarithmically between 0.01 and contour(theta0_vals, theta1_vals, J_vals, logspace(-, , ))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(), theta(), 'rx', 'MarkerSize', , 'LineWidth', );


绘图效果如上。
Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作的更多相关文章
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Stanford机器学习---第一讲. Linear Regression with one variable
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...
- 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)
从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...
- MachineLearning ---- lesson 2 Linear Regression with One Variable
Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...
- [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...
随机推荐
- CSS选择器的特殊性和LOVE HA
在CSS中当几个相同的选择器对同一个元素有不同的规则时,该怎么应用这些规则呢? 答案就是:CSS特殊性(CSS specificity) 选择器特殊性有选择器本身组成,特殊性由4个数值表述:0, 0, ...
- 在c或c+程序里打印调用栈。转
在C/C++程序里打印调用栈信息 我们知道,GDB的backtrace命令可以查看堆栈信息.但很多时候,GDB根本用不上.比如说,在线上环境中可能没有GDB,即使有,也不太可能让我们直接在上面调试.如 ...
- 谈谈jQuery之绑定事件
http://www.jiangweishan.com/article/jQuery-bind-on.html $.extend({ hook:function(hookName){ var sele ...
- word20161205
cluster-aware application / 支持群集的应用程序 cluster-unaware application / 不支持群集的应用程序 Cluster.exe CNAME (ca ...
- Github如何删除repository(仓库)
首先就是你的Github主页了. 第二步点击进入一个repository(仓库) 第三步点击右上的setting 将此页面滑动到最下面找个这个 点击删除即可!
- C#构造方法重载
1.什么是构造方法? 首先,它是一个方法,它是类中 众多方法中的一个.其次,它具有类中其他方法所不具备的一些特性. 在类执行开始的时候,执行这个方法. 2.构造方法相对其他方法有哪些不同? 方法名:类 ...
- windows下的socket网络编程
windows下的socket网络编程 windows下的socket网络编程 clinet.c 客户端 server.c 服务器端 UDP通信的实现 代码如下 已经很久没有在windows下编程了, ...
- 交叉编译alsa声卡驱动
變異成靜態 ./configure --target=arm-linux --enable-shared=no --enable-static=yes 編譯成動態 ./configure --targ ...
- 在sublime-text中设置浏览器预览
配置在Chrome,Firefox中打开 安装 SideBarEnhancements 然后通过ctrl + k, ctrl + b打开侧边栏,在侧边栏的文件中右击,找到 open width -&g ...
- 【leetcode】Wildcard Matching
Wildcard Matching Implement wildcard pattern matching with support for '?' and '*'. '?' Matches any ...