Caffe fine-tuning 微调网络
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/
目前呢,caffe,theano,torch是当下比较流行的Deep Learning的深度学习框架,楼主最近也在做一些与此相关的事情。在这里,我主要介绍一下如何在Caffe上微调网络,适应我们自己特定的新任务。一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据。因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们可能只能拿到几千张或者几万张某一特定领域的图像,比如识别衣服啊、标志啊、生物种类等等。在这种情况下重新训练一个新的网络是比较复杂的,而且参数不好调整,数据量也不够,因此fine-tuning微调就是一个比较理想的选择。
微调网络,通常我们有一个初始化的模型参数文件,这里是不同于training from scratch,scrachtch指的是我们训练一个新的网络,在训练过程中,这些参数都被随机初始化,而fine-tuning,是我们可以在ImageNet上1000类分类训练好的参数的基础上,根据我们的分类识别任务进行特定的微调。
这里我以一个车型的识别为例,假设我们有431种车型需要识别,我的任务对象是车,现在有ImageNet的模型参数文件,在这里使用的网络模型是CaffeNet,是一个小型的网络,其实别的网络如GoogleNet也是一样的原理。那么这个任务的变化可以表示为:
任务:分类
类别数目:1000(ImageNet上1000类的分类任务)------> 431(自己的特定数据集的分类任务431车型)
那么在网络的微调中,我们的整个流程分为以下几步:
- 依然是准备好我们的训练数据和测试数据
- 计算数据集的均值文件,因为集中特定领域的图像均值文件会跟ImageNet上比较General的数据的均值不太一样
- 修改网络最后一层的输出类别,并且需要加快最后一层的参数学习速率
- 调整Solver的配置参数,通常学习速率和步长,迭代次数都要适当减少
- 启动训练,并且需要加载pretrained模型的参数
简单的用流程图示意一下:

1.准备数据集
这一点就不用说了,准备两个txt文件,放成list的形式,可以参考caffe下的example,图像路径之后一个空格之后跟着类别的ID,如下,这里记住ID必须从0开始,要连续,否则会出错,loss不下降,按照要求写就OK。
这个是训练的图像label,测试的也同理

2.计算数据集的均值文件
使用caffe下的convert_imageset工具
具体命令是
/home/chenjie/louyihang/caffe/build/tools/convert_imageset /home/chenjie/DataSet/CompCars/data/cropped_image/ ../train_test_split/classification/train_model431_label_start0.txt ../intermediate_data/train_model431_lmdb -resize_width=227 -resize_height=227 -check_size -shuffle true
其中第一个参数是基地址路径用来拼接的,第二个是label的文件,第三个是生成的数据库文件支持leveldb或者lmdb,接着是resize的大小,最后是否随机图片顺序
3.调整网络层参数
参照Caffe上的例程,我用的是CaffeNet,首先在输入层data层,修改我们的source 和 meanfile, 根据之前生成的lmdb 和mean.binaryproto修改即可
最后输出层是fc8,
1.首先修改名字,这样预训练模型赋值的时候这里就会因为名字不匹配从而重新训练,也就达成了我们适应新任务的目的。
1.调整学习速率,因为最后一层是重新学习,因此需要有更快的学习速率相比较其他层,因此我们将,weight和bias的学习速率加快10倍。
原来是fc8,记得把跟fc8连接的名字都要修改掉,修改后如下

4.修改Solver参数
原来的参数是用来training from scratch,从原始数据进行训练的,因此一般来说学习速率、步长、迭代次数都比较大,在fine-tuning 微调呢,也正如它的名字,只需要微微调整,以下是两个对比图

主要的调整有:test_iter从1000改为了100,因为数据量减少了,base_lr从0.01变成了0.001,这个很重要,微调时的基本学习速率不能太大,学习策略没有改变,步长从原来的100000变成了20000,最大的迭代次数也从450000变成了50000,动量和权重衰减项都没有修改,依然是GPU模型,网络模型文件和快照的路径根据自己修改
5.开始训练!
首先你要从caffe zoo里面下载一下CaffeNet网络用语ImageNet1000类分类训练好的模型文件,名字是bvlc_reference_caffenet.caffemodel
训练的命令如下:

OK,最后达到的性能还不错accuray 是0.9,loss降的很低,这是我的caffe初次体验,希望能帮到大家!
Caffe fine-tuning 微调网络的更多相关文章
- (原)caffe中fine tuning及使用snapshot时的sh命令
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5946041.html 参考网址: http://caffe.berkeleyvision.org/tu ...
- L23模型微调fine tuning
resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有 ...
- Fine Tuning
(转载自:WikiPedia) Fine tuning is a process to take a network model that has already been trained for a ...
- Caffe训练好的网络对图像分类
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/c ...
- 如何用Caffe训练自己的网络-探索与试验
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点. 1. 使用Caffe中自带的网络模型来运行自己的数据集 参考 [1] :http://www.cnblo ...
- caffe fine tune 复制预训练model的参数和freeze指定层参数
复制预训练model的参数,只需要重新copy一个train_val.prototxt.然后把不需要复制的层的名字改一下,如(fc7 -> fc7_new),然后fine tune即可. fre ...
- pytorch识别CIFAR10:训练ResNet-34(微调网络,准确率提升到85%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过训练准确率只达到80%. 这里对网络做点小修改,在最开始的 ...
- DL开源框架Caffe | 模型微调 (finetune)的场景、问题、技巧以及解决方案
转自:http://blog.csdn.net/u010402786/article/details/70141261 前言 什么是模型的微调? 使用别人训练好的网络模型进行训练,前提是必须和别人 ...
- [转载]关于Pretrain、Fine-tuning
[转载]关于Pretrain.Fine-tuning 这两种tricks的意思其实就是字面意思,pre-train(预训练)和fine -tuning(微调) 来源:https://blog.csdn ...
随机推荐
- 一个类似backbone路由的纯净route ( 前端路由 客户端路由 backbone路由 )
大家用backbone.angular,可能都习惯了内置的路由,这两个框架的路由都是非常优秀的,强大而简单. 客户端(浏览器)路由原理其实比较简单,其实就是监听hash的变化. 在之前的架构探讨中,说 ...
- MSCRM 2011/2013/2015 修改显示记录数
本文地址:http://www.cnblogs.com/Earson/p/4256213.html 1.针对全局的显示记录数最大值设置 在CRM2011产品中的后台MSCRM_Config数据库中表名 ...
- sqlite原子提交原理
英文地址 文章参考 简介 支持事务的数据库系统如sqlite的一个重要特性是原子提交(atomic commit).也就是在一个事务中进行的对数据库的写操作要么全部执行,要么全部不执行.看起来像是对数 ...
- iOS之属性修饰符 retain、strong和copy区别测试
时不时会有点迷惑属性修饰符retain.strong.copy三者之间的区别,还是把测试过程记录下来好一点! 1.属性修饰符结论 2.给retain.strong.copy修饰的字符串属性赋值指针变化 ...
- Android 字符乱码问题的处理
<Android 网络HTML查看器>一文中,运行代码实践一下 发现html源代码中出现了乱码,原因很明显:charset="gb2312" android默认的字符集 ...
- AFNetworking 3.0 源码解读 总结
终于写完了 AFNetworking 的源码解读.这一过程耗时数天.当我回过头又重头到尾的读了一篇,又有所收获.不禁让我想起了当初上学时的种种情景.我们应该对知识进行反复的记忆和理解.下边是我总结的 ...
- 安卓开发之UIwebview
web view在安卓开发中是比较常见的UI,像微信的新闻模块就采用了这个,他的作用越来越广,下面我把以前做的贴了出来,如果有更好的办法,希望大神不吝赐教哈,嘿嘿,纯代码来了: java代码 publ ...
- The JSP specification requires that an attribute name is preceded by whitespace
一个jsp页面在本地运行一点问题没有,发布到服务器就报错了: The JSP specification requires that an attribute name is preceded by ...
- 使用jqgrid的C#/asp.net mvc开发者的福音 jqgrid-asp.net-mvc
你是否使用jqgrid? 你是否想在C#/asp.net mvc中使用jqgrid? 那你很可能曾经为了分析jqgrid的request url用fiddler忙活了2个小时.(如果你要使用jqgri ...
- MapReduce实例-基于内容的推荐(一)
环境: Hadoop1.x,CentOS6.5,三台虚拟机搭建的模拟分布式环境 数据:下载的amazon产品共同采购网络元数据(需FQ下载)http://snap.stanford.edu/data/ ...