题目链接

题意:给出A,B, C点坐标求D,E,F坐标,其中每个角都被均等分成三份  

求出 ABC的角a, 由 BC 逆时针旋转 a/3 得到BD,然后 求出 ACB 的角a2, 然后 由 BC顺时针 旋转 a2 / 3得到 DC,然后就交点

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
struct Point
{
double x, y;
};
typedef Point Vector;
Vector operator + (Vector A, Vector B)
{
Vector C;
C.x = A.x + B.x;
C.y = A.y + B.y;
return C;
}
Vector operator - (Vector A, Vector B)
{
Vector C;
C.x = A.x - B.x;
C.y = A.y - B.y;
return C;
}
Vector operator *(Vector A, double b)
{
Vector C;
C.x = A.x * b;
C.y = A.y * b;
return C;
}
Point read_point()
{
Point temp;
scanf("%lf%lf", &temp.x, &temp.y);
return temp;
}
double Dot(Vector A, Vector B)
{
return A.x * B.x + A.y * B.y;
}
double Length(Vector A)
{
return sqrt(Dot(A, A));
}
double Angle(Vector A, Vector B)
{
return acos(Dot(A, B) / Length(A) / Length(B));
}
Vector Rotate(Vector A, double rad)
{
Vector C;
C.x = A.x * cos(rad) - A.y * sin(rad);
C.y = A.x * sin(rad) + A.y * cos(rad);
return C;
}
double Cross(Vector A, Vector B)
{
return A.x * B.y - A.y * B.x;
}
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
{
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
Point getD(Point A, Point B, Point C)
{
Vector v1 = C - B;
double a1 = Angle(A - B, v1);
v1 = Rotate(v1, a1 / ); Vector v2 = B - C;
double a2 = Angle(A - C, v2);
v2 = Rotate(v2, -a2 / ); return GetLineIntersection(B, v1, C, v2); }
int main()
{
int T;
Point A, B, C, D, E, F;
scanf("%d", &T);
while (T--)
{
A = read_point();
B = read_point();
C = read_point();
D = getD(A, B, C);
E = getD(B, C, A);
F = getD(C, A, B); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", D.x, D.y, E.x, E.y, F.x, F.y); }
return ;
}

UVA11178 Morley's Theorem(基础模板)的更多相关文章

  1. uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)

    Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the ...

  2. UVA11178 Morley's Theorem

    题意 PDF 分析 就按题意模拟即可,注意到对称性,只需要知道如何求其中一个. 注意A.B.C按逆时针排列,利用这个性质可以避免旋转时分类讨论. 时间复杂度\(O(T)\) 代码 #include&l ...

  3. [Uva11178]Morley's Theorem(计算几何)

    Description 题目链接 Solution 计算几何入门题 只要求出三角形DEF的一个点就能推出其他两个点 把一条边往内旋转a/3度得到一条射线,再做一条交点就是了 Code #include ...

  4. UVA 11178 Morley's Theorem 计算几何模板

    题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...

  5. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  7. UVA 11178 Morley's Theorem(几何)

    Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...

  8. new 经典基础模板总结

    NOIP-NOI-ZJOI基础模板总结 目录 C++语言和STL库操作 重载运算符操作 /* 重载运算符 格式 如重载小于号 这里是以x递减为第一关键字比较,y递减为第二关键字比较 */ bool o ...

  9. Bootstrap 4/3 页面基础模板 与 兼容旧版本浏览器

    Bootstrap 3 与 4 差别很大,目录文件结构.所引入的内容也不同,这里说说一下 Bootstrap 引入的文件.网页模板和兼容性问题.本网站刚刚搭建好,正好发一下文章原来测试网站. Boot ...

随机推荐

  1. [HDU5904]LCIS(DP)

    题意: 给定两个序列,求它们的最长公共递增子序列的长度, 并且这个子序列的值是连续的 n,m<=1e5,a[i],b[i]<=1e6分析:dp[i]表示以数字i结尾的序列最长长度 dp[a ...

  2. 【jQuery EasyUI系列】创建CRUD数据网格

    在上一篇中我们使用对话框组件创建了CRUD应用创建和编辑用户信息.本篇我们来创建一个CRUD数据网格DataGrid 步骤1,在HTML标签中定义数据网格(DataGrid) <table id ...

  3. linux定时任务生产java服务无法执行问题案例

    我写了一个重启resin的脚本,由于业务原因,需要定时在某一个时间重启下resin服务器 于是就在crontab里配置了如下内容: * * - root /usr/local/bin/resin_re ...

  4. java/c# 判断点是否在多边形区域内

    java/c# 判断点是否在多边形区域内 年06月29日 ⁄ 综合 ⁄ 共 1547字 ⁄ 字号 小 中 大 ⁄ 评论关闭 最近帮别人解决了一个问题,如何判断一个坐标点,是否在多边形区域内(二维). ...

  5. C# 对sharepoint 列表的一些基本操作,包括添加/删除/查询/上传文件给sharepoint list添加数据

    转载:http://www.cnblogs.com/kivenhou/archive/2013/02/22/2921954.html 操作List前请设置SPWeb的allowUnsafeUpdate ...

  6. URL(待整合到HTTP书中哦)

    一:scheme://host.domain:port/path/filename scheme - 定义因特网服务的类型.最常见的类型是 http host - 定义域主机(http 的默认主机是 ...

  7. webservice的常用注解

    定义说明书的显示方法1.@WebService(serviceName="PojoService", portName="PojoPort", name=&qu ...

  8. Tomcat5通过cardadm.xml启动项目

    配置tomcat5\conf\Catalina\localhost下的   cardadm.xml  ,然后在MyEclipse中,直接启动Tomcat5,不需要部署项目

  9. android开机自启动广播

    权限<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>     &l ...

  10. 多词查询(Multi-word Queries)

    如果我们一次只能搜索一个词,那么全文搜索就会显得相当不灵活.幸运的是,通过match查询来实现多词查询也同样简单: GET /my_index/my_type/_search { "quer ...