BZOJ2190: [SDOI2008]仪仗队
Description
作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。
现在,C君希望你告诉他队伍整齐时能看到的学生人数。
Input
共一个数N。
Output
共一个数,即C君应看到的学生人数。
Sample Input
Sample Output
HINT
【数据规模和约定】 对于 100% 的数据,1 ≤ N ≤ 40000
不难发现除去第一列和最后一行,一个人(x,y)能被看到的条件是gcd(x-1,y-1)=1。
那么反演一下就行了。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=40010;
int pri[maxn],mu[maxn],vis[maxn],cnt;
void gen(int n) {
vis[1]=mu[1]=1;
rep(i,2,n) {
if(!vis[i]) pri[++cnt]=i,mu[i]=-1;
rep(j,1,cnt) {
if(pri[j]*i>n) break;
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
}
int main() {
int n=read()-1,ans=0;
if(n) ans+=2;gen(n);
rep(d,1,n) ans+=mu[d]*(n/d)*(n/d);
printf("%d\n",ans);
return 0;
}
BZOJ2190: [SDOI2008]仪仗队的更多相关文章
- P2158/bzoj2190 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...
- bzoj2190: [SDOI2008]仪仗队(欧拉)
2190: [SDOI2008]仪仗队 题目:传送门 题解: 跟着企鹅大佬做题! 自己瞎搞搞就OK,不难发现,如果以C作为原点建立平面直角坐标系,那么在这个坐标系中,坐标为(x,y)且GCD(x,y) ...
- BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数
作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图). ...
- BZOJ2190 [SDOI2008]仪仗队(欧拉函数)
与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...
- 【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队
由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前. ∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1. 考虑将图按对角线划分开,两部 ...
- [bzoj2190][SDOI2008]仪仗队 ——欧拉函数
题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...
- [BZOJ2190][SDOI2008]仪仗队 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌 ...
- BZOJ2190 SDOI2008 仪仗队 gcd,欧拉函数
题意:求从左下角能看到的元素个数 引理:对点(x,y),连线(0,0)-(x,y),元素个数为gcd(x,y)-1(中间元素) 即要求gcd(x,y)=1 求gcd(x,y)=1的个数 转化为2 \s ...
随机推荐
- 【JAVA网络流之浏览器与服务器模拟】
一.模拟服务器获取浏览器请求http信息 代码: package p06.TCPTransferImitateServer.p01.ImitateServer; import java.io.IOEx ...
- 无废话ExtJs 入门教程十四[文本编辑器:Editor]
无废话ExtJs 入门教程十四[文本编辑器:Editor] extjs技术交流,欢迎加群(201926085) ExtJs自带的编辑器没有图片上传的功能,大部分时候能够满足我们的需要. 但有时候这个功 ...
- 六款小巧的HTTP Server[C语言]
1.micro_httpd - really small HTTP server特点: 支持安全的 .. 上级目录过滤 支持通用的MIME类型 支持简单的目录 支持目录列表 支持使用 index.ht ...
- Socket编程注意接收缓冲区大小
转自:http://www.cnblogs.com/ITBread/p/3900254.html 最近在做一个udp升级程序,因文件有点大,需要将程序分成多个包发送,每次发送一个包,收到回复后发送下一 ...
- 单链表带头结点&不带头结点
转自:http://blog.csdn.net/xlf13872135090/article/details/8857632 Node *head; //声明头结点 带头结点初始化 void I ...
- 不通过App Store实现ios应用分发下载安装
最近公司的项目准备着手宣传工作了,宣传手册上要印制App的下载地址二维码,但是客户端应用还未上线,需要一种临时的方案解决应用分发下载问题,通常ios应用必须通过苹果应用商店才能下载安装,但是也可以看到 ...
- CodeIgniter中驱动器的使用方法
驱动器“Drivers”是CodeIgniter框架从2.0版本开始加入的新特性.正如中文版译者所言: 笔者看了这三篇英文参考,加上自己的一些理解,对官方文档关于驱动器的这一部分进行了一些补充. 1. ...
- error MSB6006: “cmd.exe”已退出,代码为 3。
VS2012 Qt项目生成提示以下错误: 原因是 generated files 的 debug或release文件夹下的文件不存在. 解决方法:QT5 –>convert project ...
- Android LayoutInflater详解(转)
在实际开发中LayoutInflater这个类还是非常有用的,它的作用类似于findViewById().不同点是LayoutInflater是用来找res/layout/下的xml布局文件,并且实例 ...
- Activity生命周期 onCreate onResume onStop onPause (转)
Android应用开发提高系列(6)——Activity生命周期 onCreate 和 onResume 在程序启动时候都会启动, 所有有些需要在onCreate onResume中都要实现的功能,之 ...