Description

  作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。       现在,C君希望你告诉他队伍整齐时能看到的学生人数。

Input

  共一个数N。

Output

  共一个数,即C君应看到的学生人数。

Sample Input

  4

Sample Output

  9

HINT

【数据规模和约定】   对于 100% 的数据,1 ≤ N ≤ 40000

不难发现除去第一列和最后一行,一个人(x,y)能被看到的条件是gcd(x-1,y-1)=1。

那么反演一下就行了。

#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=40010;
int pri[maxn],mu[maxn],vis[maxn],cnt;
void gen(int n) {
vis[1]=mu[1]=1;
rep(i,2,n) {
if(!vis[i]) pri[++cnt]=i,mu[i]=-1;
rep(j,1,cnt) {
if(pri[j]*i>n) break;
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
}
int main() {
int n=read()-1,ans=0;
if(n) ans+=2;gen(n);
rep(d,1,n) ans+=mu[d]*(n/d)*(n/d);
printf("%d\n",ans);
return 0;
}

  

BZOJ2190: [SDOI2008]仪仗队的更多相关文章

  1. P2158/bzoj2190 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...

  2. bzoj2190: [SDOI2008]仪仗队(欧拉)

    2190: [SDOI2008]仪仗队 题目:传送门 题解: 跟着企鹅大佬做题! 自己瞎搞搞就OK,不难发现,如果以C作为原点建立平面直角坐标系,那么在这个坐标系中,坐标为(x,y)且GCD(x,y) ...

  3. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  4. bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数

    作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).    ...

  5. BZOJ2190 [SDOI2008]仪仗队(欧拉函数)

    与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...

  6. 【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队

    由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前. ∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1. 考虑将图按对角线划分开,两部 ...

  7. [bzoj2190][SDOI2008]仪仗队 ——欧拉函数

    题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...

  8. [BZOJ2190][SDOI2008]仪仗队 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌 ...

  9. BZOJ2190 SDOI2008 仪仗队 gcd,欧拉函数

    题意:求从左下角能看到的元素个数 引理:对点(x,y),连线(0,0)-(x,y),元素个数为gcd(x,y)-1(中间元素) 即要求gcd(x,y)=1 求gcd(x,y)=1的个数 转化为2 \s ...

随机推荐

  1. 面试题之【打印1到最大的N位数】

    题目描述:给定一个数字N,打印从1到最大的N位数. 看起来像是很简单的问题(虽然实际也不是很难...)我们很容易写出这样的代码: #include<iostream> #include&l ...

  2. 源码方式安装mysql5.5

    mysql5.5开始,源码配置编译工具configure变成了cmake,所以先要去把cmake装上.并安装make,bison,cmake,gcc-c++,ncurses的包 去http://www ...

  3. 注解:【有连接表的】Hibernate单向N->N关联

    Person与Address关联:单向N->N,[有连接表的] #和单向1->N关联代码完全相同,控制关系的一端需要增加一个set类型的属性,被关联的持久化实例以集合形式存在. #N-&g ...

  4. AxureRP7.0各类交互效果汇总帖(转)

    了便于大家参考,我把这段时间发布分享的所有关于AxureRP7.0的原型做了整理. 以下资源均有对应的RP源文件可以下载. 当然 ,其中有部分是需要通过完成解密游戏[攻略]才能得到下载地址或者下载密码 ...

  5. GitHub上史上最全的Android开源项目分类汇总 (转)

    GitHub上史上最全的Android开源项目分类汇总 标签: github android 开源 | 发表时间:2014-11-23 23:00 | 作者:u013149325 分享到: 出处:ht ...

  6. html5 head头标签

    桌面端开发中,meta标签通常用来为搜索引擎优化(SEO)及 robots定义页面主题,或者是定义用户浏览器上的cookie:它可以用于鉴别作者,设定页面格式,标注内容提要和关键字:还可以设置页面使其 ...

  7. 解决phpMyAdmin“登录超时 (1440 秒未活动),请重新登录”的问题

    问题描述 phpMyAdmin打开一段时间后会出现“登录超时 (1440 秒未活动),请重新登录”的问题: 解决方法 永久有效: vim config.inc.php 然后在里面加上下面这一行: $c ...

  8. 关于CSS动画效果的图片展示

    animation:帧动画 animation-name:定义绑定Keyframes的动画名称 @keyframes XXX 定义动画,里面是动画具体内容 animation-duration:过渡动 ...

  9. ajax乱码

    ajax提交请求,参数在data上依然乱码,并且已经做了过滤转码, 其他请求没有问题,此请求有问题建议使用下述方式处理: 前端:encodeURIComponent(fileName)或者encode ...

  10. BZOJ 3542 [Poi2014]Couriers ——可持久化线段树

    [题目分析] 查找区间内出现次数大于一半的数字. 直接用主席树,线段树上维护区间大小,由于要求出现次数大于一半,每到一个节点可以分治下去. 时间复杂度(N+Q)logN [代码] #include & ...