RDD是什么?

RDD,全称是Reslilient Distributed Datasets,是一个容错的,并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中。诸如map,flatMap,filter等转换操作实现了monad模式,很好的契合了Scala的集合操作。除此之外,RDD还提供了诸如join,groupBy,reduceByKey等更为方便的操作,(注意:reduceByKey是action,而非transformation),以支持常见的数据运算。

通常来讲,针对数据处理有集中常见模型,包括:Iterative Algorithms,Relational Queries,MapReduce,Stream Processing。例如Hadoop MapReduce采用了MapReduces模型,Storm则采用了Stream Processing模型。RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。

RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency;若多个Child RDD分区都可以依赖,则称之为wide dependency。不同的操作依据其特性。,可以回产生不同的依赖。例如map操作会产生narrow dependency.而join操作则参数wide dependency.

Spark之所以将依赖分为narrow和wide.基于两点原因。

首先,narrow dependencies可以支持在同一个cluster node上以管道形式执行多条命令,例如在执行了map后,紧接着执行filter。相反,wide dependecies需要所有的福分区都是可用的,可能还需要调用雷速MapReduce之类的操作进行跨节点传递。

其次,则是从失败恢复的角度考虑。narrow dependencies的失败恢复更有效,因为它只需要重新计算丢失的parent partition即可,而且可以并行地在不同节点进行重计算。而wide dependencies牵涉到RDD各级的多个Parent Partitions。下图说明了narrow dependencies与wide dependencies之间的区别:

深入理解Spark RDD的更多相关文章

  1. 理解Spark RDD中的aggregate函数(转)

    针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考. 首先,Spark文档中aggregate函数定义如下 def aggrega ...

  2. 深入源码理解Spark RDD的数据分区原理

    通过内存创建RDD的分区设置 1.示例代码 在创建RDD的时候,我们可以从内存中进行创建:输出保存为文件.为了演示效果,我们的示例代码如下: import org.apache.spark.{Spar ...

  3. Spark RDD初探(一)

    本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformat ...

  4. Spark RDD aggregateByKey

    aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...

  5. 《深入理解Spark:核心思想与源码分析》(第2章)

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  6. Spark RDD概念学习系列之RDD的转换(十)

    RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...

  7. Spark RDD概念学习系列之RDD的checkpoint(九)

     RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...

  8. Spark RDD概念学习系列之RDD是什么?(四)

       RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见  Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...

  9. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

随机推荐

  1. ol新属性

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. CodeForces#275--DIV 2--A

    A. Counterexample time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  3. JAVA StringBuilder StringBuffer String比较

    字符串连接时的效率: StringBuilder>StringBuffer>String 区别: StringBuilder效率最高,但是不是线程安全的,适用于单线程.多线程用String ...

  4. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  5. 相遇点对 & 数点问题

    题意: 一个长为l的环,环上有n个点,每个点以一定的速度顺时针或逆时针运动,两个点相遇即某一时刻内两个点位置相同. 求有多少点对相遇----相同点对出现多次仅统计一次. SOL: 考试的时候想到用线段 ...

  6. CentOS下强行umount卸载设备

    fuser -cu /usr/local/tomcat7/webapps/dsideal_yy/html/down/ fuser -ck /usr/local/tomcat7/webapps/dsid ...

  7. ACM Longest Repeated Sequence

    Description You are given a sequence of integers, A = a1, a2, ... an. A consecutive subsequence of A ...

  8. Codeforces Round #207 (Div. 1) A. Knight Tournament(STL)

    脑子又卡了...来一发set的,STL真心不熟. #include <stdio.h> #include <string.h> #include <iostream> ...

  9. JS设置CSS样式的几种方式【转】

    用JS来动态设置CSS样式,常见的有以下几种 1. 直接设置style的属性  某些情况用这个设置 !important值无效 如果属性有'-'号,就写成驼峰的形式(如textAlign)  如果想保 ...

  10. 简单实现异步编程promise模式

    本篇文章主要介绍了异步编程promise模式的简单实现,并对每一步进行了分析,需要的朋友可以参考下 异步编程 javascript异步编程, web2.0时代比较热门的编程方式,我们平时码的时候也或多 ...