递归实现n(经典的8皇后问题)皇后的问题
问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上,此问题进而可以推广为n皇后的问题。
解题思路:n*n的矩阵,递归每一个点,当皇后数量达到n的时候,进行判断,若满足题目条件,则答案加一(number++),否则继续进行遍历。
保存皇后点的方法:构造一个二维数组reserve[][],当reserve[i][j] == 1时候,则该点已经有皇后,若reserve[i][j]==0则,皇后可以存在于该点,且该点置为一。
判断皇后数量的方法,定义一个int sign ,当sign<8的时候递归遍历,并且重复上一操作,否则对reserve数组进行判断,判断此数组内等于1的点的坐标,是否满足题意,判断完之后,当前点置为0.
判断x,y轴只需要判断是否有相等的坐标值即可。
判断斜线,则判断每两个点之间坐标值相减的绝对值是否相等,(这里需要递归遍历每一个点)若相等,则点在斜线上重复,返回false,若不相等,则点在斜线上不重复,返回true。
先定义全局变量:
private static int number = 0; //表示答案数量
int count = 0; //下文的数组下标
static String[] str ; //保存正确答案的字符串数组,为了去除重复
定义主函数:
public static void main(String[] args) {
com c = new com();
System.out.print("请输入皇后数字n:");
Scanner s = new Scanner(System.in);
int n = Integer.parseInt(s.nextLine());
int[][] reserve = new int[n][n]; //储存皇后的状态
str = new String[n*100];
int sign = 1;
c.startRun(reserve, n ,sign);
System.out.println(number);
}
下面执行遍历操作的函数:
public void startRun(int[][] reserve , int n ,int sign){
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
if(reserve[i][j] == 0)
reserve[i][j] = 1; //该点为一个皇后
else{
continue;
}
if(sign == n){
if(checkAllQuean(reserve,n)){ //对n皇后进行位置判断
output(reserve,n); //一个输出函数,输出n皇后的点
System.out.println();
number++;
}
}else if(sign < n){
startRun(reserve , n ,sign + 1); //进行遍历操作
}
reserve[i][j] = 0;
}
}
}
下面对数组reserve进行皇后位置判断:
/*
* 检查两个皇后是否在同一行,同一列,或者同一斜线上
* 存在返回false
* 不存在返回true
*/
public boolean checkAllQuean(int[][] reserve , int n){
int[] x = new int[n];
int x1 = 0;
int[] y = new int[n];
int y1 = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
if(reserve[i][j] == 1){
x[x1++] = i;
y[y1++] = j;
}
}
}// 获得所有皇后的点坐标
for(x1 = 0;x1 < n;x1++){
for(y1 = 0;y1 < n;y1++){
if(x1 == y1)
continue;
if(!checkTwoQuean(x[x1],y[x1],x[y1],y[y1])){ //比较每一次n皇后的点点点点坐标
return false;
}
}
}
if(!checkReNumber(x,y,n)){
return false;
}
return true;
}
删除重复答案的函数:
/*
* 将确定的解答数组,保存在一个String[]里面,用来避免重复
* 若重复则返回false
* 不重复则返回true
*/
public boolean checkReNumber(int[] x,int [] y , int n){
String test = null ;
for(int j = 0; j < n;j++){
test += x[j]+""+y[j]+"";
}
for(String st : str){
if(st == null)
continue;
if(st.equals(test)){
return false;
}
}
str[count++] = test;
return true;
}
下面进行对两个皇后位置的判断:
/*
* 检查两个皇后是否在同一行,同一列,或者同一斜线上
* 存在返回false
* 不存在返回true
*/
public boolean checkTwoQuean(int i , int j , int m ,int n){
if(i == m)
return false;
else if(j == n)
return false;
else if(Math.abs((m - i)) == Math.abs((n - j)))
return false;
else{
return true;
}
}
下面是输出reserve点的函数:
public void output(int[][] reserve , int n){
for(int k = 0; k < n;k++){
for(int h = 0;h< n;h++){
if(reserve[k][h] == 0)
continue;
System.out.print(k+","+h+" ");
}
}
}
完,但是效率极低,非常低。
输出案例:
请输入皇后数字n:4
0,1 1,3 2,0 3,2
0,2 1,0 2,3 3,1
2
n皇后问题在大于等于4的时候有解
递归实现n(经典的8皇后问题)皇后的问题的更多相关文章
- 关于java的递归写法,经典的Fibonacci数的问题
经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...
- 数据结构之递归Demo(走迷宫)(八皇后)(汉诺塔)
递归 顾名思义,递归就是递归就是递归就是递归就是递归......就是递归 Google递归:
- 回溯经典(指定位置N皇后问题)
N皇后问题自不必多说,这道题的先行条件是在放置的时候已经指定了一个棋子的位置. 输入第一行为N,第二行为指定棋子的坐标(x,y):输出方案总数以及按字典序升序的各种方案. 思路: 首先是回溯,其次对待 ...
- LeetCode N皇后 & N皇后 II
题目链接:https://leetcode-cn.com/problems/n-queens/ 题目链接:https://leetcode-cn.com/problems/n-queens-ii/ 题 ...
- C#中八皇后问题的递归解法——N皇后
百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...
- Python递归的经典案例
目录 : 一.递归的简介 二.递归的经典应用 2.1 递归求阶乘 2.2 递归推斐波那契数列 2.3 二分法找有序列表指定值 2.4 递归解汉诺塔 前言: 当我们碰到诸如需要求阶乘或斐 ...
- 算法学习->递归典例N皇后问题
00 问题 在NN(这个N==N皇后的N)的方格棋盘上放置n个皇后,要求:1.每个皇后在不同行不同列:2.每个皇后在不同左右对角线 输出要求:输出符合条件的所有解,解以皇后的坐标的形式. 01 思路 ...
- 算法——八皇后问题(eight queen puzzle)之回溯法求解
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...
- 个人项目Individual Project:n皇后问题
源码的github链接: https://github.com/luhan420/test/tree/master 1.需求分析 在本次的课程设计中,用到的知识点主要有:类.函数.选择结构里的条件语 ...
- Prolog学习:数独和八皇后问题
上一篇简单介绍了下Prolog的一些基本概念,今天我们来利用这些基本概念解决两个问题:数独和八皇后问题. 数独 数独是一个很经典的游戏: 玩家需要根据n×n盘面上的已知数字,推理出所有剩余空格的数字, ...
随机推荐
- Fis3的前端工程化之路[三大特性篇之声明依赖]
Fis3版本:v3.4.22 Fis3的三大特性 资源定位:获取任何开发中所使用资源的线上路径 内容嵌入:把一个文件的内容(文本)或者base64编码(图片)嵌入到另一个文件中 依赖声明:在一个文本文 ...
- NodeJs之调试
关于调试 当我们只专注于前端的时候,我们习惯性F12,这会给我们带来安全与舒心的感觉. 但是当我们使用NodeJs来开发后台的时候,我想噩梦来了. 但是也别泰国担心,NodeJs的调试是很不方便!这是 ...
- java中servlet的各种路径
1. web.xml中<url-pattern>路径,(叫它Servlet路径!) > 要么以“*”开关,要么为“/”开头 2. 转发和包含路径 > *****以“/”开头:相 ...
- Socket聊天程序——Common
写在前面: 上一篇记录了Socket聊天程序的客户端设计,为了记录的完整性,这里还是将Socket聊天的最后一个模块--Common模块记录一下.Common的设计如下: 功能说明: Common模块 ...
- Jquery mobiscroll 移动设备(手机)wap日期时间选择插件以及滑动、滚动插件
Jquery Mobiscroll是一个用于触摸设备(Android phones, iPhone, iPad, Galaxy Tab)的日期和时间选择器jQuery插件.以及各种滑动插件 可以让用户 ...
- jQuery学习之路(3)- 事件
▓▓▓▓▓▓ 大致介绍 jQuery增加了并扩展了基本的事件处理机制,不但提供了更加优雅的事件处理语法,而且极大地增强了事件处理能力 ▓▓▓▓▓▓ jQuery中的事件 ▓▓▓▓▓▓ 加载DOM 在j ...
- css text-fill-color与text-stroke讲解
顾名思义"text-fill-color"就是文字填充颜色而"text-stroke"就是文字描边.还别说,两个属性可以制作出各种炫酷的文字效果,不过IE系列都 ...
- .NET Core 2016 回顾
都在回顾自己的2016,今天我们来看看.NET Core的2016. 每一年的脚步的确是快,转眼间马上就2017.新的一年,带着理想和抱负继续出发. 1 月 ASP.NET 5 改名 ASP.NET ...
- 记一次.NET代码重构
好久没写代码了,终于好不容易接到了开发任务,一看时间还挺充足的,我就慢慢整吧,若是遇上赶进度,基本上直接是功能优先,完全不考虑设计.你可以认为我完全没有追求,当身后有鞭子使劲赶的时候,神马设计都是浮云 ...
- iOS之UILabel的自动换行
思路: 获取UILabel的frame大小 获取UILabel的字体大小 获取UILabel的文本内容 根据上面的3部分数据,计算文本显示区域大小 根据4计算的大小,实时改变UILabel的frame ...